• 제목/요약/키워드: Copper catalyzed reaction

검색결과 22건 처리시간 0.031초

Facile Access to a Variety of 2,5-Biaryl-1,2,4-triazol-3-ones via Regioselective N-Arylation of Triazolones

  • Park, Ji-Yeon;Chae, Jung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2143-2146
    • /
    • 2010
  • A selective synthetic method of the 2,5-biaryltriazolones has been developed via copper-catalyzed N-arylation reaction. Aryltriazolones, which were readily prepared from commercially available compounds, were N-arylated to 2,5-biaryltriazolones with high regioselectivity. This approach allows for access to a variety of 2,5-biaryl-1,2,4-trizol-3-ones in a simple and practical manner.

구리 촉매하에서 규소와 메탄올의 반응에 의한 Tetramethyl orthosilicate(TMOS) 합성(제2보) - 구리촉매하에서 규소와 메탄올과의 반응의 반응속도론 - (Tetramethyl orthosilicate(TMOS) Synthesis by the Copper-Catalyzed Reaction of the Metallic Silicon with Methanol (II) - The Kinetics of the Copper-Catalyzed Reaction of Silicon with Methanol -)

  • 소순영;원호연;전용진;이범재;양현수
    • 공업화학
    • /
    • 제10권2호
    • /
    • pp.259-262
    • /
    • 1999
  • 금속 규소와 구리 촉매가 함유된 접촉물과 메탄올의 반응에 의한 메톡시실란의 합성에서의 TMOS 반응 생성속도를 산출하였다. 활성 자리 수의 변화에 따른 영향을 제거하기 위해서 유속 전이 기술을 사용하여 주입되는 메탄올의 유속을 반응도중 급격히 변화시켰다. 실험 결과 TMOS 생성속도에 영향을 미치는 인자는 반응에 참여하는 메탄올 농도가 아닌 접촉물질의 사용량임을 확인하였으며, 이를 바탕으로 TMOS 생성 메카니즘에서 접촉 물질의 표면에서 중간생성물이 형성되는 반응 단계가 반응 율속단계라고 추정되었다. 최적 공정조건에서 규소 1 g당 최대 TMOS 생성속도는 $210^{\circ}C$에서 0.030 (g/min)이었으며, 이때의 활성화 에너지는 값은 8.5 kcal/mol, 반응 생성속도 상수의 온도 의존성은 식 $k=4.09{\times}10^4\;exp$ ($-4.73{\times}10^3/T$)로 나타났다.

  • PDF

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

Glycation of Copper, Zinc-Superoxide Dismutase and its Effect on the Thiol-Metal Catalyzed Oxidation Mediated DNA Damage

  • Park, Jeen-Woo;Lee, Soo-Min
    • BMB Reports
    • /
    • 제28권3호
    • /
    • pp.249-253
    • /
    • 1995
  • The nonenzymatic glycation of copper, zinc-superoxide dismutase (Cu,Zn-SOD) led to inactivation and fragmentation of the enzyme. The glycated Cu,zn-SOD was isolated by boronate affinity chromatography. The formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in calf thymus DNA and the generation of strand breaks in pBhiescript plasmid DNA by a metal-catalyzed oxidation (MCO) system composed of $Fe^{3+}$, $O_2$, and glutathione (GSH) as an electron donor was enhanced more effectively by the glycated CU,Zn-SOD than by the nonglycated enzyme. The capacity of glycated Cu,Zn-SOD to enhance damage to DNA was inhibited by diethylenetriaminepentaacetic acid (DETAPAC), azide, mannitol, and catalase. These results indicated that incubation of glycated CU,Zn-SOD with GSH-MCO may result in a release of $Cu^{2+}$ from the enzyme. The released $Cu^{2+}$ then likely participated in a Fenton-type reaction to produce hydroxyl radicals, which may cause the enhancement of DNA damage.

  • PDF

금속착물로 아미드 가수분해 촉매화에 관한 연구 (A STUDY ON AMIDI HYDROLYSIS CATALYZED BY MITAL COMPlEXES)

  • 김병순;오영희
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.579-583
    • /
    • 1996
  • 본 연구는 날로 더해가는 오염의 직접간접 원인인 고분자성 제품류의 분해 촉진에 사용될 촉매 개발의 일차적 연구로서, 구리 촉매작용에 의한 아미드 결합의 분해 반응을 수행하였다. 가시광선 스펙트럼의 변화를 측정함으로써 반응을 추적하였다. 아미드 리간드를 포함하는 구리 화합물에서 수용액의 pH의 증가에 따라, 온도의 증가에 따라 아미드의 반응속도가 증가한다. 반응속도는 구리 화합물에 대하여 1차 반응으로 밝혀졌다. 반응의 중간체로 구리-히드록시 화합물이 관여하는 반응 메카니즘을 제시하였다. 분해 반응 메카니즘의 확실한 이해를 통하여 펩티드 결합의 분해 반응에 사용될 좋은 촉매 개발에의 응용이 기대 된다.

  • PDF

Oxidative Modification of Neurofilament-L by Copper-catalyzed Reaction

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • 제36권5호
    • /
    • pp.488-492
    • /
    • 2003
  • Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for neuronal survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of copper and peroxide in the modification of NF-L. When disassembled NF-L was incubated with copper ion and hydrogen peroxide, then the aggregation of protein was proportional to copper and hydrogen peroxide concentrations. Dityrosine crosslink formation was obtained in copper-mediated NF-L aggregates. The copper-mediated modification of NF-L was significantly inhibited by thiol antioxidants, N-acetylcysteine, glutathione, and thiourea. A thioflavin-T binding assay was performed to determine whether the copper/$H_2O_2$ system-induced in vitro aggregation of NF-L displays amyloid-like characteristics. The aggregate of NF-L displayed thioflavin T reactivity, which was reminiscent of amyloid. This study suggests that copper-mediated NF-L modification might be closely related to oxidative reactions which may play a critical role in neurodegenerative diseases.

Nanocrystalline Copper Oxide(II)-Catalyzed Alkyne-Azide Cycloadditions

  • Song, Young-Jin;Yoo, Chung-Yul;Hong, Jong-Tai;Kim, Seung-Joo;Son, Seung-Uk;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권8호
    • /
    • pp.1561-1564
    • /
    • 2008
  • Although the use of Cu(II) salts as catalysts without reductants is limited in the cycloaddition of acetylenes with azides, the catalytic system employing average 10 nm CuO(II) nanoparticles in the absence of reductants shows good catalytic activity to form 1,4-disubstituted 1,2,3-triazoles even in wet THF as well as water. It is also noticeable that CuO(II) nanoparticle catalysts can be recycled with consistent activity. A range of alkynes and azides were subject to the optimized CuO(II) nanoparticle-catalyzed cycloaddition reaction conditions to afford the desired products in good yields.

An Efficient and Mild Oxidation of α-Isophorone to Ketoisophorone Catalyzed by N-Hydroxyphthalimide and Copper Chloride

  • Chen, Lihua;Tang, Ruiren;Li, Zhongying;Liang, Shan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.459-463
    • /
    • 2012
  • N-hydroxyphthalimide (NHPI) and copper chloride ($CuCl_2$) were first utilized for aerobic oxidation of ${\alpha}$-isophorone (${\alpha}$-IP) to ketoisophorone (KIP) and the effects of co-catalysts, temperature, reaction time, solvent, amount of $CuCl_2$ and pressure of oxygen were investigated extensively. NHPI/$CuCl_2$ turned out to be highly efficient to this oxidation with up to 91.3% conversion and 81.0% selectivity under mild conditions. And various hydrocarbons including benzylic compounds, cycloalkene and its derivatives were also oxidized smoothly under optimized conditions. Moreover, the possible reaction mechanism was proposed and verified by FT-IR spectra.

Chemistry of Carbonate-Sulfur Flux

  • Q. Won Choi;Choi Han;Chang So-Young;Pyun Chong-Hong;Kim Chang-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1118-1121
    • /
    • 1994
  • Reactions of alkaline metal carbonates with sulfur are investigated in detail. The evolution of CO and a trace of $SO_2$ were observed in the course of reaction with major component of polysulfides. Some evidences that the reaction proceeds with breaking of terminal sulfur-sulfur bond in the sulfur polymer, and forming CO, $SO_2$ and polysulfide are presented. Polysulfides have the role of keeping free sulfur and allow it to react with other chemicals to rather high temperatures.plexes, whereas the binuclear and mononuclear complexes of Mn$^{2+}$ and Co$^{2+}$