• Title/Summary/Keyword: Copper alloy

Search Result 438, Processing Time 0.029 seconds

Inactivation Activity of Bronze Alloy Yugi for Reduction of Cross-Contamination of Food-borne Pathogen in Food Processing (식품제조 환경에서 식품위해세균의 교차오염 감소를 위한 청동합금 유기의 살균효과)

  • Lee, Eun-Jin;Park, Jong-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.4
    • /
    • pp.309-313
    • /
    • 2008
  • To investigate the antibacterial activity of the traditional bronze alloy Yugi, the cultures of Salmonella spp., Escherichia coli O157, Enterobacter sakazakii, and Bacillus cereus were exposed to the metal coupons of bronze, copper, tin, and stainless steel, and the sterilizing activities were analyzed. Antibacterial efficacy of copper coupon toward S. Typhimurium, E. coli, and E. sakazakii were the highest among them and those were followed by bronze, tin, and then stainless steel in the activity order. However, there was little sterilizing activity on Gram-positive B. cereus. Minimal inhibitory concentrations of cupric ion were 25 ppm for S. Typhimurium, E. coli, and E. sakazakii, and 50 ppm for B. cereus. Yugi bronze alloy showed more rigidity and practicality in comparison with copper, and has been used in Korea. Therefore, the bronze alloy may be more effective to reduce the cross-contamination of S. Typhimurium, E. coli, and E. sakazakii than stainless steel in food processing surface.

The Effect of Annealing Heat Treatment by Anodic Polarization Impedance Experiments for Cu-10%Ni Alloy

  • Lee, Sung-Yul;Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.536-541
    • /
    • 2015
  • Copper has been used extensively as an electric wire or as a base material in various types of machineries owing to its good electrical and thermal conductivity and good fabricating property, as well as its good corrosion resistance compared to iron. Furthermore, the copper-nickel alloy has significant corrosion resistance in severely corrosive environments. Although, cupro-nickel alloy shows better corrosion resistance than the brass and bronze series, this alloy also corroded in severely corrosive environments, including aggressive chloride ions, dissolved oxygen, and condition of fast flowing seawater. In this study, and annealing treatment at various annealing temperatures was carried out on the cupro-nickel (Cu-10%Ni) alloy, and the effects of annealing were investigated using electrochemical methods, such as measuring the polarization and impedance behaviors under flowing seawater conditions. The corrosion resistance increased by annealing compared to non heat treatment in the absence of flowing seawater. In particular, the sample annealed at $200^{\circ}C$ exhibited the best corrosion resistance. The impedance in the presence of flowing seawater showed higher values than in the absence of flowing seawater. Furthermore, the highest impedances was observed in the sample annealed at $800^{\circ}C$, irrespective of the present of flowing seawater. Consequently, the corrosion resistance of cupro-nickel (Cu-10%Ni) alloy in a severely corrosive environment can be improved somewhat by annealing.

A Semi-solid Bonding between Rolled Steel for Structural Parts and Lead Bronze Alloy (구조용 압연강재와 연청동 합금의 반용융 확산접합)

  • 김우열;박홍일;이길근;서원찬
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.70-76
    • /
    • 2000
  • A rolled steel for structural parts and lead bronze alloy were bonded each other by a new semi-solid diffusion bonding process to investigate the effect of the process parameters, for example bonding temperature and bonding time, on the interface characteristics, and bonding behavior. It can be possible that manufacture of the bonded steel/lead bronze which has a cylindrical shape with inserted the lead bronze alloy into the steel ring by the diffusion bonding process under the semi-solid condition of the lead bronze alloy without any pressure and flux. It has been know that the control of the amount of the liquid phase in semi-solid lead bronze alloy was very important to obtain soundness interface, since the shear strength of the bonded steel/lead bronze at 850℃ for 60 minutes under the condition of about 40% of the liquid phase in the lead bronze alloy shows maximum value, 210 MPa. The shear strength increases with an increase in bonding time and show maximum value, and then decreases.

  • PDF

Gold/Copper Bi-Metallic Catalysts by Carbothermal Method for CO2 Reduction

  • Yoon, Hee-chan;Jung, Woo-bin;Jung, Hee-Tae
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.83-83
    • /
    • 2019
  • Increasing the CO2 concentration in the atmosphere induce high temperature and rising sea levels. So the technology that capture and reuse of the CO2 have been recently become popular. Among other methods, CRR(CO22 reduction reaction) is typical method of CO2 reusing. Electrocatalyst can show more higher efficiencies in CRR than photocatalyst because it doesn't use nature source. Nowadays, finding high efficient electrocatalyst by controlling electronic (affected by stoichiometry) and geometric (affected by atomic arrangement) factors are very important issues. Mono-atomic electro-catalyst has limitations on controlling binding energy because each intermediate has own binding energy range. So the Multi-metallic electro-catalyst is important to stabilize intermediate at the same time. Carbon monoxide(CO) which is our target product and important feedstock of useful products. Au is known for the most high CO production metal. With copper, Not only gold/copper has advantages which is they have FCC packing for easily forming solid solution regardless of stoichiometry but also presence of adsorbed CO on Cu promotes the desorption of CO on Au because of strong repulsion. And gold/copper bi-metal catalyst can show high catalytic activity(mass activity) although it has low selectivity relatively Gold. Actually, multi-metallic catalyst structure control method is limited in the solution method which is takes a lot of time. In here, we introduce CTS(carbo thermal shock) method which is using heat to make MMNP in a few seconds for making gold-copper system. This method is very simple and efficient in terms of time(very short reaction time and using carbon substrate as a direct working electrode) and increasing reaction sites(highly dispersed and mixing alloy structures). Last one is easy to control degree of mixing and it can induce 5 or more metals in one alloy system. Gold/copper by CTS can show higher catalytic activity depending on metal ratio which is altered easily by changing simple variables. The ultimate goals are making CO2 test system by CTS which can check the selectivity depending on metal types in a very short time.

  • PDF

A STUDY ON THE ANODIC POLARIZATION OF DENTAL AMALGAMS (수종 아말감의 Anodic Polarization에 관한 연구)

  • Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.199-204
    • /
    • 1989
  • The purpose of this study was to observe the anodic polarization curve from 4 kinds of low copper amalgam (Fine cut alloy, Spheralloy, Aristalloy and Amalcap) and 4 kinds of high copper amalgam (Dispersalloy, Sybraloy Orosphere and Tytin) obtained by using the potentiostat. The specimen made as the direction of manufacturer was stored at room temperature for about 7 days. The standard surface preparation was routinely carried out. The 0.9% saline solution was used as electrolyte in pH 6.8-7.0 at $37^{\circ}C$. The open circuit potential was determined after 30 minutes' immersion of specimen. The scan rate was 1mV/sec and the surface area of amalgam exposed to the solution was 0.785$cm^2$ for each specimen. All potentials reported are with respect to Ag/AgCl eelctrode. The following results were obtained. 1. The corrosion potential of high copper amalgams was higher than one of low copper amalgams, and the current density of high copper amalgam was lower than one of low copper amalgams. 2. The low copper amalgams had the similar pattern of polarization curve, but the high copper amalgams had the different pattern one another. 3. The polarization curve of Orosphere amalgam which is the admixed type was similar to one of low copper amalgam.

  • PDF

Fabrication and characterization of Cu50-Fe50 alloy (Cu50-Fe50 합금의 제조 및 특성평가)

  • Lee, Jung-Il;Lam, Dilli;Paeng, Jong Min;Cho, Hyun Su;Yang, Su Min;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.175-178
    • /
    • 2018
  • Copper is a well know material for use as heat sink or heat exchanger. However, copper has a considerable low tensile strength and temperature limit. A material that has a good thermal conductivity, low cost, but also excellent mechanical properties are desired. In order to identify the mechanism for the material properties of cast Cu-Fe alloys, $Cu_{50}-Fe_{50}$ (wt.%) alloy was produced by using a high-frequency induction furnace, a typical metal casting process. The Cu-Fe alloy consists of Cu, ${\alpha}$-Fe, ${\gamma}$-Fe with dendrite structures. The crystal structure and microstructure of the prepared $Cu_{50}-Fe_{50}$ alloy were systematically examined using XRD, FE-SEM, EDS and XRF for electrical devices.

Estimation of Power Collector Wear Considering the Operating Environment of a Maglev (자기부상열차의 주행 환경을 고려한 집전자 마모도 평가)

  • Lee, Kyoung-bok;Ma, Sang-kyeon;Lim, Jae-won;Park, Do-young;Son, Jeong-ryong;Kang, Hyun-il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • The wear of the third track power collector is one of the essential check factors for safe train operation. Rapid wear of the current collector accelerates the line of the catenary. In addition, the arc generated when the catenary line is turned off causes a malfunction in the minute portion of the catenary line, thereby shortening the life of the catenary line. In this paper, to analyze the mechanical wear of the current collector during driving according to the environmental factor of the Maglev(magnetic levitation train), it was divided into dry season and wet season. the wear of metallized collector, copper alloy collector and carbon collector were measured and compared with each other. The wear rate was measured according to the position of the wire, the position of the power collector and the position per hour. Microscopic photographs of the cross section and surface of the power collector were measured. The electrical currents of the metallized collector, copper alloy collector and carbon collector were measured.

Electrical Properties of Cu/Mn Alloy Resistor with Low Resistance and Thermal Stability (낮은 저항과 열안정성을 가지는 Cu/Mn 합금저항의 전기적 특성)

  • Kim, Eun Min;Kim, Sung Chul;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.365-369
    • /
    • 2016
  • In this paper, we fabricated Cu/Mn alloy shunt resistor with low resistance and thermal stability for use of mobile electronic devices. We designed metal alloy composed of copper (Cu) and manganese (Mn) to embody in low resistance and low TCR which are conflict each other. Cu allows high electrical conductivity and Mn serves thermal stability in this Cu/Mn alloy system. We confirmed the elemental composition of the designed metal alloy system by using energy dispersive X-ray (EDX) analysis. We obtained low resistance below $10m{\Omega}$ and low temperature coefficient of resistance (TCR) below $100ppm/^{\circ}C$ from the designed Cu/Mn alloy resistor. And in order to minimize resistance change caused by alternative frequency on circuit, shape design of the metal alloy wire is performed by rolling process. Finally, we conclude that design of the metal alloy system was successfully done by alloying Cu and 3 wt% of Mn, and the Cu/Mn alloy resistor has low resistance and thermal stability.

Investigation of shielding effects of 60Hz ELF magnetic fields on shielding material property (차폐재의 재료특성에 따른 60Hz ELF 자계차폐 효과분석)

  • Min, Suk-Won;Song, Ki-Hyun;Myung, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1960-1962
    • /
    • 2004
  • In this paper, we have studied shielding characteristics of high conductivity or high permeability materials on ELF magnetic fields generated from single or three phase AC line. Perm alloy has been selected as high permeability material and copper as high conductivity material. Four-plate shield (square section) was considered as a shielding shape. We found copper showed stable shielding effects more than perm alloy.

  • PDF

Influence of Heat Treatment on Brazing Characteristics between Cemented Carbides and Steel (초경합금과 강의 Brazing특성에 미치는 열처리의 영향)

  • Kim Ha Young;Nakamura Mitsuru;Lee Sang Hak
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.43-45
    • /
    • 2004
  • Brazing between cemented carbides and steel for tool investigated by copper alloy brazing filler. Copper alloy filler was high liquidus temperature($990^{\circ}C$), therefor the shank(steel) occurred softening. Because brazing sample was necessary to heat treatment after brazing process. This experiment, influence of austenite time and purge temperature on heat treatment were investigated. As a result, these treatments obtained to high deflective strength In case of austenite time was short and purge temperature was low. Especially, nitride precipitated brazing layers was strongly influenced by the deflective strength.

  • PDF