Inactivation Activity of Bronze Alloy Yugi for Reduction of Cross-Contamination of Food-borne Pathogen in Food Processing

식품제조 환경에서 식품위해세균의 교차오염 감소를 위한 청동합금 유기의 살균효과

  • Lee, Eun-Jin (Department of Food Science and Biotechnology, Kyungwon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Kyungwon University)
  • 이은진 (경원대학교 식품생물공학과) ;
  • 박종현 (경원대학교 식품생물공학과)
  • Published : 2008.12.31

Abstract

To investigate the antibacterial activity of the traditional bronze alloy Yugi, the cultures of Salmonella spp., Escherichia coli O157, Enterobacter sakazakii, and Bacillus cereus were exposed to the metal coupons of bronze, copper, tin, and stainless steel, and the sterilizing activities were analyzed. Antibacterial efficacy of copper coupon toward S. Typhimurium, E. coli, and E. sakazakii were the highest among them and those were followed by bronze, tin, and then stainless steel in the activity order. However, there was little sterilizing activity on Gram-positive B. cereus. Minimal inhibitory concentrations of cupric ion were 25 ppm for S. Typhimurium, E. coli, and E. sakazakii, and 50 ppm for B. cereus. Yugi bronze alloy showed more rigidity and practicality in comparison with copper, and has been used in Korea. Therefore, the bronze alloy may be more effective to reduce the cross-contamination of S. Typhimurium, E. coli, and E. sakazakii than stainless steel in food processing surface.

청동합금인 우리 전통 식기 놋그릇 유기 소재의 항미생물 특성을 연구하기 위해 주요한 식중독 세균인 Salmonella spp., E. coli O157, E. sakazakii, B. cereus의 배양액을 유기, 구리, 주석, 스테인레스 스틸 쿠폰에 노출 건조 후 생균정도를 분석하였다. 이들 금속표면에서의 살균력 측정결과 Gram(-) 세균인 S. Typhimurium, E. coli와 E. sakazakii는 구리가 가장 높았고 유기, 주석표면, 스테인레스 스틸 금속표면 순으로 항균성이 높은 것으로 나타났다. 그러나 Gram(+)인 B. cereus의 살균효과는 어느 금속표면에서도 살균효과가 거의 나타나지 않았다. S. Typhimurium, E. sakazakii의 구리이온($Cu^{+2}$ 최소생육저해 농도는 25 ppm이었지만 B. cereus의 경우는 50 ppm으로 높은 것으로 나타났다. 따라서 구리와는 다르게 강한 경도를 갖고 있는 유기 소재를 식품제조 환경에 적용시킬 경우 Salmonella spp.를 포함한 주요한 Gram(-) 세균의 교차오염을 효과적으로 저감화 할 수 있을 것으로 사료된다.

Keywords

References

  1. Lontie R.: Copper proteins and copper enzymes. CRC Press, Boca Raton, FL, USA. pp.208-216 (1984)
  2. Cotton F.A., Wilkinson G.: Advanced inorganic chemistry, 5th. ed. Wiley, New York, NY, USA. pp1334-1338 (1988)
  3. Nies D.H.: Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol., 51, 730-750 (1999) https://doi.org/10.1007/s002530051457
  4. Rodriguez M., Farias R.N., Massa E.M.: Membrane-associated redox cycling of copper mediates hydroperoxide toxicity in Escherichia coli. Biochim. Biophys. Acta, 1144, 77-84 (1993) https://doi.org/10.1016/0005-2728(93)90033-C
  5. Domek M.J., Lechavallier M.W., Cameron S.C., Mcfeters G.A.: Evidence for the role of copper in the inkury process of coliform bacteria in drinking water. Appl. Environ. Microbiol., 48, 289-293 (1984)
  6. Simpson J.A., Cheeseman K.H., Smith S.E., Dean R.T.: Freeradical generation by copper ions and hydrogen peroxide. Biochem. J., 254, 519-523 (1988) https://doi.org/10.1042/bj2540519
  7. Kobayashi S., Ueda K., Komano T.: The effects of metal ions on the DNA damage induced by hydrogen peroxide. Agric. Biol. Chem., 54, 69-76 (1990) https://doi.org/10.1271/bbb1961.54.69
  8. De Veer I., Wilke K., Ruden H.: Bacteria-reducing properties of copper-containing and non-copper-containing materials, II. Relationship between microbiocide effect of copper-containing materials and copper ion concentration after contamination with moist and dry hands. Zentralbl. Hyg. Umweltmed., 195, 516-528 (1994)
  9. Faundez G., Troncoso M., Navarrete P., Figueroa G.: Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol., 4, 19-23 (2004) https://doi.org/10.1186/1471-2180-4-19
  10. Rogers J, Dowsett A.B. , Ennis P.J., Lee J.V., Keevil C.W.: The influence of plumbing materials on biofilm formation and growth of Legionela pneumophila in potable water systems containing complex microbial flora. Appl. Environ. Microbiol., 60, 1842-1851 (1994)
  11. Schoenen D., Schlomer G.: Microbial contamination of ater by pipe and tube materials: 3. Behaviour of Escherchiacoli, Citrobacter freundii and Klebsiella pneumoniae. Zentralbl. Hyg. Umweltmed., 188, 475-480 (1989)
  12. Cooksey D.A.: Genetics of bactericide resistance in plant pathogenic bacteria. Annu. Rev. Phytopathol., 28, 201-219 (1990) https://doi.org/10.1146/annurev.py.28.090190.001221
  13. Foye W.O.: Antimicrobial activities of mineral elements. Marcel Cycels, 2nd. New York, NY, USA. pp.387-419 (1977)
  14. Balogh B, Jones JB, Momol M.T., Olson S.M.: Persistence of bacteriophages as biocontrol agents in the tomato canopy, p.299-302. In: Momol M.T. Ji P., Jones J.B.(ed.), Proc. 1st Int. Symp. Tomato Dis., 2005 International Society for Horticultural Science, Acta Hortic. 695 (2005)
  15. Jung M.K., Lee M.Y., Park J.H.: Inhbitory effect of cupric ion diffused from brass ware on the growth of E.coli O157:H7, S.typhimurum, S.aureus, and B.cereus. Food Sci. Biotechnol., 13, 680-683 (2004)
  16. Noyce J.O., Michels H., Keevil C.W.: Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol., 72, 4239-4244 (2006) https://doi.org/10.1128/AEM.02532-05
  17. Wilks S.A., Michels H., Keevil C.W.: The survival of Escherichia coli O157 on a range of metal surfaces. Int. J .Food Microbiol., 105, 445-454 (2005) https://doi.org/10.1016/j.ijfoodmicro.2005.04.021
  18. Noyce J.O., Michels H., Keevil C.W.: Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the health care environment. J. Hosp. Infect., 63, 289-297 (2006) https://doi.org/10.1016/j.jhin.2005.12.008
  19. Weaver L., Michels H.T., Keevil C.W.: Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J. Hosp. Infect, 68, 145-151 (2008) https://doi.org/10.1016/j.jhin.2007.11.011
  20. Wilks S.A., Michels H.T., Keevil C.W.: Survival of Listeria monocytogenes ScottA on metal surfaces: implications for cross contamination. Int. J. Food Microbiol., 111, 93-98 (2006) https://doi.org/10.1016/j.ijfoodmicro.2006.04.037
  21. Wan Y.Z., Xiong G.Y., Liang H., Raman S., He F., Huang Y.: Modification of medical metals by ion implantation of copper. Appl. Surface Sci., 253, 9426-9429 (2007) https://doi.org/10.1016/j.apsusc.2007.06.031
  22. Carlos C., Felix G.C.: Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev., 14, 121-137 (1994) https://doi.org/10.1111/j.1574-6976.1994.tb00083.x