• Title/Summary/Keyword: Copper Sheets

Search Result 57, Processing Time 0.028 seconds

A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets (중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.

Design of Copper Sheets to Subcool Liquid Nitrogen in HTS Transformer (HTS변압기의 액체질소 과냉을 위한 구리판의 설계)

  • ;;Steven W. Van Sciver
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.291-294
    • /
    • 2003
  • In our newly proposed cryogenic systems for HTS transformer, liquid nitrogen is subcooled by copper sheets extended from coldhead of cryocooler. Since the shape of copper sheets has been given by the shape of HTS windings and electrical restriction, the thickness of copper sheets is the main parameter to determine operating temperature in HTS windings. Temperature distributions between windings and coldhead are investigated by heat transfer analysis, from which the thickness of copper sheets to maintain every part of windings below 66 K is calculated. The effects of the amount of AC loss on the temperature distributions in cooling system are also presented.

  • PDF

Characteristics of Electric Resistance Dual Spot Welding Process of AZ31 Magnesium Alloy Sheets (AZ31 마그네슘 합금 판재의 전기저항 이중 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, an electric resistance dual-spot welding process using a copper electrode inserted in a heating electrode is suggested for the spot welding of AZ31 magnesium sheets. This spot-welding process involves two heating methods for welding at the interfacial zone between the magnesium sheets, one of which is the heating method by thermal conduction from the heating electrode heated by the welding current induced to the steel electrode, and the other heating method uses the electric resistance between the contacted surfaces of the two sheets by the welding current induced to the copper electrode. This welding process includes the welding variables, such as the current induced in the heating electrode and the copper electrode, and the outer diameters of the heating electrode. This is because the heat conducted from the heating electrode can be maintained at a higher temperature in the welding zone, which has a slow cooling effect on the nugget of the melted metal after the welding step. The pressure exerted during the pressing of the magnesium sheets by the heating electrode can be increased around the nugget zone at the spot-welding zone. Thus, it not only reduces the warping effect of the elastoplastic deformation of sheets, but also the corona bond can make it less prone to cracking at the welded zone, thereby reducing the number of nuggets expelled out of the corona bond. In conclusion, it was known that an electric resistance dual spot welding process using the copper electrode inserted in the heating electrode can improve the welding properties in the electric resistance spot welding process of AZ31 magnesium sheets.

Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets (구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

Ultra Grain Refinement and High Strengthening of Deoxidized Low-Phosphorous Copper by Accumulative Roll-Bonding Process (ARB법에 의한 인탈산동의 결정립초미세화 및 고강도화)

  • Lee, Seong-Hee;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.592-597
    • /
    • 2006
  • A deoxidized low-phosphorous (DLP) copper was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two copper sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet is then cut to the two pieces of same dimensions and the same procedure was repeated to the sheets up to eight cycles (${\varepsilon}{\sim}6.3$). TEM observation revealed that ultrafine grains were developed after the 4th cycle, and their size decreased at higher cycles. Tensile strength of the copper increased with the equivalent strain, and it reached 547 MPa which was 3 times higher than that of the initial material. It is concluded that the ARB process is an effective method for high strengthening of the DLP copper.

3D Printed Flexible Cathode Based on Cu-EDTA that Prepared by Molecular Precursor Method and Microwave Processing for Electrochemical Machining

  • Yan, Binggong;Song, Xuan;Tian, Zhao;Huang, Xiaodi;Jiang, Kaiyong
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.180-186
    • /
    • 2020
  • In this work, a metal-ligand solution (Cu-EDTA) was prepared based on the molecular precursor method and the solution was spin-coated onto 3D printed flexible photosensitive resin sheets. After being processed by microwave, a laser with a wavelength of 355 nm was utilized to scan the spin-coated sheets and then the sheets were immersed in an electroless copper plating solution to deposit copper wires. With the help of microwave processing, the adhesion between copper wires and substrate was improved which should result from the increase of roughness, decrease of contact angle and the consistent orientation of coated film according to the results of 3D profilometer and SEM. XPS results showed that copper seeds formed after laser scanning. Using the 3D printed flexible sheets as cathode and galvanized iron as anode, electrochemical machining was conducted.

Experimental Study on the Size Effect and Formability of Sheet Materials in Microscale Deep Drawing Process (마이크로 딥 드로잉 공정에서 박판소재의 크기효과 및 성형성에 관한 실험적 연구)

  • Nam, Jung Soo;Lee, Sang Won;Kim, Hong Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.793-798
    • /
    • 2015
  • This study investigates the effects of the size of copper sheets on the plastic deformation behavior in a microscale deep drawing process. Tensile tests are conducted on the copper sheets to study the flow stress of the materials with different grain sizes before carrying out the microscale deep drawing experiments. After the tensile tests, a novel desktop-sized microscale deep drawing system is used to perform the microscale deep drawing process. A series of microscale deep drawing experiments are subsequently performed, and the experimental results indicate that an increase in the grain size results in the reduction of the deformation load of the copper sheets due to the effects of the surface grain. The results also show that the blank holder gap improves both the formability of copper sheets and the material flow.

Microstructure and Mechanical Properties of Oxygen Free Copper Severely Deformed by Accumulative Roll-Bonding Process (반복겹침접합압연법에 의해 강소성가공된 무산소동의 미세조직 및 기계적 특성)

  • Lee Seong-Hee;Cho Jun;Han Seung-Zun;Lim Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.240-245
    • /
    • 2005
  • An oxygen free copper was severely deformed by accumulative roll-bonding (ARB) process for improvement of its mechanical properties. Two copper sheets 1 m thick, 30 mm wide and 300 m long are first degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and roll-bonded by about $50\%$ reduction rolling without lubrication at ambient temperature. The bonded sheet is then cut to the two pieces of same dimensions and the same procedure was repeated to the sheets up to eight cycles $(\varepsilon-6.4)$. TEM observation revealed that ultrafine grains were developed after the third cycle, and their size was slightly increased at higher cycles. Tensile strength of the copper increased with the strain at low strain levels, but it hardly increased from 3 cycles $(\varepsilon>2.4)$ due to occurrence of dynamic recovery, even if the imposed strain increased.

Effect of Heat Treatment Conditions on the Microstructure and Mechanical Properties of Asymmetrically Cold Rolled OFC Sheet (비대칭 냉간압연된 무산소동 판재의 열처리 조건이 미세조직과 기계적 성질에 미치는 영향)

  • Kim, S.T.;Kwon, S.C.;Kim, D.V.;Lee, J.K.;Seo, S.J.;Yoon, T.S.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.5-10
    • /
    • 2020
  • Heat treatment conditions of 88.5% asymmetrically cold rolled oxygen free copper (OFC) sheets have been studied to obtain an equiaxed fine microstructure with a grain size of less than 10 ㎛. The commercial OFC sheets with the thickness of 10 mm were asymmetrically cold rolled by using equal speed asymmetric rolling (ESAR) processes and total rolling reduction. The thickness of the rolled sheets were 88.5% and 1.15 mm, respectively. An equiaxed fine microstructure of OFC sheets with a grain size of 6.0 ㎛ were obtained when the asymmetrically cold rolled OFC sheets were heat treated at 180℃ for 40 minutes. The tensile strength of the asymmetrically cold rolled specimen increased from 217.6 MPa to 396.1 MPa, while the elongation of the specimen asymmetrically cold rolled and heat treated increased from 29.0% to 66.9% along with an 8% increase of the tensile strength.