• Title/Summary/Keyword: Copper Oxides

Search Result 88, Processing Time 0.022 seconds

Present Condition on the Recycling and Management for Waste Acids (폐산의 재활용 현황 및 관리 방안)

  • Sim, Yeon Ju;Kim, Eui Yong
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.300-303
    • /
    • 2010
  • Environmental issues on the waste emission and its treatment are of great interest in these days. In order to resolve the pollution problems, recycling the waste materials is generally recommended. Especially, emission of waste acids in designated sources is increasing every year. In this study, we focused on the effective recycling of the waste acids rather than treatments. Management systems of the waste acids are not systematically designed, and the quality of the waste regulation on the recycling product is unclear in domestic and foreign countries. We surveyed the present conditions on domestic waste emission and recycling of waste acids. For the final analysis of the recycling products, iron chloride, iron sulfate, copper cyanide, copper oxides, and cement copper are selected as candidates. We expect that this article would help establishing the systematic management system on treating the waste acid materials.

Electrochemical Characterization of Anodic Tin Oxides with Nano-Porous Structure (나노 구조를 가지는 다공성 주석 산화물의 전기화학적 특성)

  • Lee, Jae-Wook;Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • A nano-porous structure of tin oxide was prepared using an anodic oxidation process and the sample's electrochemical properties were evaluated for application as an anode in a rechargeable lithium battery. Microscopic images of the as-anodized sample indicated that it has a nano-porous structure with an average pore size of several tens of nanometers and a pore wall size of about 10 nanometers; the structural/compositional analyses proved that it is amorphous stannous oxide (SnO). The powder form of the as-anodized specimen was satisfactorily lithiated and delithiated as the anode in a lithium battery. Furthermore, it showed high initial reversible capacity and superior rate performance when compared to previous fabrication attempts. Its excellent electrode performance is probably due to the effective alleviation of strain arising from a cycling-induced large volume change and the short diffusion length of lithium through the nano-structured sample. To further enhance the rate performance, the attempt was made to create porous tin oxide film on copper substrate by anodizing the electrodeposited tin. Nevertheless, the full anodization of tin film on a copper substrate led to the mechanical disintegration of the anodic tin oxide, due most likely to the vigorous gas evolution and the surface oxidation of copper substrate. The adhesion of anodic tin oxide to the substrate, together with the initial reversibility and cycling stability, needs to be further improved for its application to high-power electrode materials in lithium batteries.

Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on γ-Al2O3 (γ-Al2O3에 담지된 Cu-Mn 산화물 촉매의 활성 및 특성)

  • Kim, Hye-jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • The catalytic oxidation of toluene over $-Al_2O_3$ supported copper-manganese oxide catalysts in the temperature range of $160-280^{\circ}C$ was investigated by employing a fixed bed flow reactor. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction(TPR), temperature-programmed oxidation(TPO), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) techniques. Catalytic oxidation of toluene was achieved at the below $280^{\circ}C$, and the optimal content of copper and manganese in the catalyst was found to be 15.0 wt%Cu-10.0 wt%Mn. From the TPR/TPO and XPS results, the redox peak of 15 Cu-10 Mn catalyst shifted to the lower temperature, and the binding energy was shifted to the higher binding energy. Furthermore, It is considered that $Cu_{1.5}Mn_{1.5}O_4$ is superior to Mn oxides and CuO in the role as active factor of catalysts from the XRD results and also catalytic activities are dependent on the redox ability and high oxidation state of catalysts.

Wear Debris Analysis using the Color Pattern Recognition (칼라 패턴인식을 이용한 마모입자 분석)

  • ;A.Y.Grigoriev
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.54-61
    • /
    • 2000
  • A method and results of classification of 4 types metallic wear debris were presented by using their color features. The color image of wear debris was used (or the initial data, and the color properties of the debris were specified by HSI color model. Particle was characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used for the definition of classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Wear Debris Analysis using the Color Pattern Recognition

  • Chang, Rae-Hyuk;Grigoriev, A.Y.;Yoon, Eui-Sung;Kong, Hosung;Kang, Ki-Hong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.34-42
    • /
    • 2000
  • A method and results of classification of four different metallic wear debris were presented by using their color features. The color image of wear debris was used far the initial data, and the color properties of the debris were specified by HSI color model. Particles were characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used fer the definition of a classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

A Study on the Age Degradation Kinetics of Pole Transformer Oil (주상변압기 절연유의 경년열화반응 속도론에 관한 연구)

  • 남영우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.99-105
    • /
    • 1997
  • In the paper, aging of insulating oil in pole transformer has been studied by performing accelerated thermal aging test. Dissolved gases were extracted by air bubbling method. Concentration of dissolved gases were modified by extraction ratio of each gases in insulating oil. Aging of insulating materials were proceeded by thermal degradation and oxidation reaction. Both of the reactions followed zeroch order kinetics. Formation rate equations for hydrocarbons, carbon oxides, and hydrogen were derived. It was conformed by gas analysis and UV-Visible spectrophotometric method that iron core and copper coil in pole transformer act as catalyst during the aging process.

  • PDF

전기집진기술의 현황과 장래전망(I)

  • 고명삼;이달우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.24-33
    • /
    • 1997
  • In this paper, aging of insulating oil in pole transformer has been studied by performing accelerated thermal aging test. Dissolved gases were extracted by air bubbling method. Concentration of dissolved gases were modified by extraction ratio of each gases in insulting oil. Aging of insulting materials were proceeded by thermal degradation and oxidation reaction. Both of the reactions followed zeroth order kinetics. Formation rate equations for hydrocarbons, carbon oxides, and hydrogen were derived. It was conformed by gas analysis and UV-visible spectrophotometric method that iron core and copper coil in pole transformer act as catalyst during the aging process.

  • PDF

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Characterization of Mineralogical and Physicochemical Properties of Soils Contaminated with Metals at Gahak Mine (가학광산 주변 중금속 함유 토양입자의 이화학적·광물학적 특성연구)

  • Lee, Choong Hyun;Lee, Seon Yong;Park, Chan Oh;Kim, Jong Won;Lee, Sang Hwan;Park, Mi Jeong;Jung, Moon Young;Lee, Young Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • Soil samples collected in an area of Gahak Mine were investigated for the characterization of mineralogical and physicochemical properties of contaminants in soils. It is found that soils in the study area are contaminated by lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), in which their concentrations are 595.3 mg/kg, 184.9 mg/kg, 712.8 mg/kg, and 10.64 mg/kg, respectively. All the concentrations exceed the concern criteria of Korean standard. Upon distribution patterns of metals identified by the sequential extraction procedure, our results show that more than 50% of metals are found as a residual type, and 30% are accounted for the association of Fe/Mn oxides. Interestingly, XRD results show that minium (Pb3O4) and cuprite (Cu2O) are identified in the soil samples, suggesting that the sources of the contaminants for Pb and Cu are these minerals. In SEM images, tens of µm of Pb oxides and Pb silicate-minerals are observed. We, therefore, note that the contamination of metals in the study area results from the direct influx and disturbance of tailings. Our findings indicate that the characterization of physicochemical and mineralogical properties of contaminated soils is a critical factor and plays an important role in optimizing recovery treatments of soils contaminated in mine development areas.

Copper/Nickel/Manganese Doped Cerium Oxides Based Catalysts for Hydrogenation of CO2

  • Toemen, Susilawati;Bakar, Wan Azelee Wan Abu;Ali, Rusmidah
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2349-2356
    • /
    • 2014
  • The recycling technology by the catalytic conversion is one of the most promising techniques for the $CO_2$ treatment of coal burning power plant flue gases. The conversion of $CO_2$ to valuable product of $CH_4$ can be used as a fuel to run the turbine for electricity generation. Through this technique, the amount of coal needed for the combustion in a gas turbine can be reduced as well as $CO_2$ emissions. Therefore, a series of catalysts based on cerium oxide doped with copper, nickel and manganese were prepared by impregnation method. From the characterization analysis, it showed that the prepared catalysts calcined at $400^{\circ}C$ were amorphous in structure with small particle size in the range below 100 nm. Meanwhile, the catalyst particles were aggregated and agglomerated with higher surface area of $286.70m^2g^{-1}$. By increasing the calcination temperature of catalysts to $1000^{\circ}C$, the particle sizes were getting bigger (> 100 nm) and having moderate crystallinity with lower surface area ($67.90m^2g^{-1}$). From the catalytic testing among all the prepared catalysts, Mn/Ce-75/$Al_2O_3$ calcined at $400^{\circ}C$ was assigned as the most potential catalyst which gave 49.05% and 56.79% $CO_2$ conversion at reaction temperature of $100^{\circ}C$ and $200^{\circ}C$, respectively.