Browse > Article
http://dx.doi.org/10.7857/JSGE.2015.20.4.083

Characterization of Mineralogical and Physicochemical Properties of Soils Contaminated with Metals at Gahak Mine  

Lee, Choong Hyun (Department of Earth & Environmental Sciences, Korea University)
Lee, Seon Yong (Department of Earth & Environmental Sciences, Korea University)
Park, Chan Oh (Korea Resources Corporation)
Kim, Jong Won (Geotechnical Department, Byucksan Engineering Corporation)
Lee, Sang Hwan (Institute of Mine Reclamation Technology, Mine Reclamation Corporation)
Park, Mi Jeong (Institute of Mine Reclamation Technology, Mine Reclamation Corporation)
Jung, Moon Young (Department of Bio & Environmental Eng., Semyung University, Choongbuk)
Lee, Young Jae (Department of Earth & Environmental Sciences, Korea University)
Publication Information
Journal of Soil and Groundwater Environment / v.20, no.4, 2015 , pp. 83-89 More about this Journal
Abstract
Soil samples collected in an area of Gahak Mine were investigated for the characterization of mineralogical and physicochemical properties of contaminants in soils. It is found that soils in the study area are contaminated by lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), in which their concentrations are 595.3 mg/kg, 184.9 mg/kg, 712.8 mg/kg, and 10.64 mg/kg, respectively. All the concentrations exceed the concern criteria of Korean standard. Upon distribution patterns of metals identified by the sequential extraction procedure, our results show that more than 50% of metals are found as a residual type, and 30% are accounted for the association of Fe/Mn oxides. Interestingly, XRD results show that minium (Pb3O4) and cuprite (Cu2O) are identified in the soil samples, suggesting that the sources of the contaminants for Pb and Cu are these minerals. In SEM images, tens of µm of Pb oxides and Pb silicate-minerals are observed. We, therefore, note that the contamination of metals in the study area results from the direct influx and disturbance of tailings. Our findings indicate that the characterization of physicochemical and mineralogical properties of contaminated soils is a critical factor and plays an important role in optimizing recovery treatments of soils contaminated in mine development areas.
Keywords
Mineralogical properties; Contaminant speciation; Tailings; heavy metals; Soil contamination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yoo, S.H., Ro, K.J., Lee, S.M., Park, M.E., and Kim, K.H., 1996, Distribution of Cadmium, Copper, Lead, and Zinc in Paddy Soils around an Old Zinc Mine, Korean Journal of Soil Science and Fertilizer, 29(4), 424-431.
2 Macklin, M.G., Brewer, P.A., Balteanu, D., Coulthard, T.J., Driga, B., Howard, A.J., and Zaharia, S., 2003, The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures, County, upper Tisa Basin, Romania., Appl. Geochem., 18, 241-257.   DOI
3 Ok, Y.S., Kim, S.H., Kim, D.Y., Lee, H., Lim, S.K., and Kim, J.G., 2003, Feasibility of Phytoremediation for Metal-Contaminated Abandoned Mining Area, Korean Journal of Soil Science and Fertilizer, 36(5), 323-332.
4 Singh, M., Sharma, M., and Tobschall, H.J., 2005, Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of the Gomati River, Applied Geochemistry, 20, 1-21.   DOI
5 Smedley, P.L. and Kinniburgh, D.G., 2002, A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry, 17, 517-568.   DOI
6 Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential Extraction Procedure for the Speciation of Particulate Trace Metals, Analytical Chemistry, 51, 844-851.   DOI
7 Van Damme, A., Degryse, F., Smolders, E., Sarret, G., Dewit, J., Swennen, R., and Manceau, A., 2010, Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy, Geochimica et Cosmochimica Acta, 74, 3707-3720.   DOI
8 Walker, S.R. and Jamieson, H.E., 2005, The speciation of arsenic in iron oxides in mine wastes from the giant gold mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale, The Canadian Mineralogist, 43, 1205-1224.   DOI
9 Yang, J.W. and Lee, Y.J., 2007, Status of Soil Remediation and Technology Development in Korea, Korean Chemical Engineering Research, 45(4), 311-318.
10 Bowell, R.J., Morley, N.H., and Din, V.K., 1994, Arsenic spedation in soil porewaters from the Ashanti Mine, Ghana, Appl. Geochem., 9, 15-22.   DOI
11 Chakraborty, S., Wolthers, M., Chatterjee, D., and Charlet, L., 2007, Adsorption of arsenite and arsenate onto muscovite and biotite mica, J. Coll. Interface Sci., 309, 392-401.   DOI
12 Dermont, G., Bergeron, M., Mercier, G., and Richer-Lafleche, M., 2008, Soil washing for metal removal: A review of physical/chemical technologies and field applications, J. Hazrd. Mater., 152, 1-31.   DOI
13 Hopenhayn, C., 2006, Arsenic in Drinking Water: Impact on Human Health, Elements, 2, 103-107.   DOI
14 Jung, K.C., Kim, B.J., and Han, S.G., 1993, Survey on Heavy Metals Contents in Native Plant near Old Zinc - Mining Sites, Korean J. Environ. Agric., 12(2), 105-111.
15 Jung, G.B., Kim, W.I., Park, K.L., and Yun, S.G., 2001, Vertical Distribution of Heavy Metals in Paddy Soil Near Abandoned Metal Mines, Korean J. Environ. Agric., 20(4), 297-302.
16 Jung, M.C., Jung, M.Y., and Choi, Y.W., 2004, Environmental Assessment of Heavy Metals Around Abandoned Metalliferous Mine in Korea, Economic and Environmental Geology, 37(1), 21-33.
17 Liu, H., Probst, A., and Liao, B., 2005, Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China), Sci. Total Environ., 339, 153-166.   DOI
18 Knight, R.D. and Henderson, P.J., 2006, Smelter dust in humus around Rouyn-Noranda, Québec, Geochemistry: Exploration. Environment, Analysis, 6, 203-214.