• 제목/요약/키워드: Copper Oxide (CuO)

검색결과 179건 처리시간 0.031초

전해 구리 도금된 활성탄소섬유에 의한 NO의 촉매 환원반응 메커니즘 연구 (NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers)

  • 박수진;장유신
    • Korean Chemical Engineering Research
    • /
    • 제40권6호
    • /
    • pp.664-668
    • /
    • 2002
  • 본 연구에서는 전해 도금되어진 활성탄소섬유(activated carbon fibers; ACFs)가 NO 환원거동에 미치는 영향에 대하여 고찰해보았다. 전해도금 시간이 증가함에 따라 탄소표면의 구리의 양은 점차 증가하였으나, 활성탄소섬유의 흡착 특성인 잘 발달된 비표면적 등의 기공구조는 약간씩 감소하는 경향을 보였다. 본 실험 결과, ACFs 및 ACFs/Cu 촉매 표면에서 $500^{\circ}C$로 NO를 반응시켰을 때 NO가 $N_2$$O_2$로 환원되는 것을 확인하였다. 특히, ACFs/Cu 촉매를 사용한 반응에서는 촉매반응 중 발생하는 산소를 촉매표면에서 잡아주는 역할을 하는 것으로 관찰되었다. 이는 NO환원에 있어서 ACFs와 ACFs/Cu 촉매 사이에 다른 기작이 있다는 것을 보여주는 것으로 생각되어진다.

Thermal Stability of Self-formed Barrier Stability Using Cu-V Thin Films

  • 한동석;문대용;김웅선;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.188-188
    • /
    • 2011
  • Recently, scaling down of ULSI (Ultra Large Scale Integration) circuit of CMOS (Complementary Meta Oxide Semiconductor) based electronic devices, the electronic devices, become much faster and smaller size that are promising property of semiconductor market. However, very narrow interconnect line width has some disadvantages. Deposition of conformal and thin barrier is not easy. And metallization process needs deposition of diffusion barrier and glue layer for EP/ELP deposition. Thus, there is not enough space for copper filling process. In order to get over these negative effects, simple process of copper metallization is important. In this study, Cu-V alloy layer was deposited using of DC/RF magnetron sputter deposition system. Cu-V alloy film was deposited on the plane SiO2/Si bi-layer substrate with smooth surface. Cu-V film's thickness was about 50 nm. Cu-V alloy film deposited at $150^{\circ}C$. XRD, AFM, Hall measurement system, and AES were used to analyze this work. For the barrier formation, annealing temperature was 300, 400, $500^{\circ}C$ (1 hour). Barrier thermal stability was tested by I-V(leakage current) and XRD analysis after 300, 500, $700^{\circ}C$ (12 hour) annealing. With this research, over $500^{\circ}C$ annealed barrier has large leakage current. However vanadium-based diffusion barrier annealed at $400^{\circ}C$ has good thermal stability. Therefore thermal stability of vanadium-based diffusion barrier is desirable for copper interconnection.

  • PDF

Investigation of Vanadium-based Thin Interlayer for Cu Diffusion Barrier

  • 한동석;박종완;문대용;박재형;문연건;김웅선;신새영
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • Recently, scaling down of ULSI (Ultra Large Scale Integration) circuit of CMOS (Complementary Metal Oxide Semiconductor) based electronic devices become much faster speed and smaller size than ever before. However, very narrow interconnect line width causes some drawbacks. For example, deposition of conformal and thin barrier is not easy moreover metallization process needs deposition of diffusion barrier and glue layer. Therefore, there is not enough space for copper filling process. In order to overcome these negative effects, simple process of copper metallization is required. In this research, Cu-V thin alloy film was formed by using RF magnetron sputter deposition system. Cu-V alloy film was deposited on the plane $SiO_2$/Si bi-layer substrate with smooth and uniform surface. Cu-V film thickness was about 50 nm. Cu-V layer was deposited at RT, 100, 150, 200, and $250^{\circ}C$. XRD, AFM, Hall measurement system, and XPS were used to analyze Cu-V thin film. For the barrier formation, Cu-V film was annealed at 200, 300, 400, 500, and $600^{\circ}C$ (1 hour). As a result, V-based thin interlayer between Cu-V film and $SiO_2$ dielectric layer was formed by itself with annealing. Thin interlayer was confirmed by TEM (Transmission Electron Microscope) analysis. Barrier thermal stability was tested with I-V (for measuring leakage current) and XRD analysis after 300, 400, 500, 600, and $700^{\circ}C$ (12 hour) annealing. With this research, over $500^{\circ}C$ annealed barrier has large leakage current. However V-based diffusion barrier annealed at $400^{\circ}C$ has good thermal stability. Thus, thermal stability of vanadium-based thin interlayer as diffusion barrier is good for copper interconnection.

  • PDF

The Effect of SnO2 Addition on Sintering Behaviors in a Titanium Oxide-Copper Oxide System

  • Lee, Ju-Won;Oh, Kyung-Sik;Chung, Tai-Joo;Paek, Yeong-Kyeun
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.357-362
    • /
    • 2022
  • The low-temperature sinterability of TiO2-CuO systems was investigated using a solid solution of SnO2. Sample powders were prepared through conventional ball milling of mixed raw powders. With the SnO2 content, the compositions of the samples were Ti1-xSnxO2-CuO(2 wt.%) in the range of x ≤ 0.08. Compared with the samples without SnO2 addition, the densification was enhanced when the samples were sintered at 900℃. The dominant mass transport mechanism seemed to be grain-boundary diffusion during heat treatment at 900℃, where active grain-boundary diffusion was responsible for the improved densification. The rapid grain growth featured by activated sintering was also obstructed with the addition of SnO2. This suggested that both CuO as an activator and SnO2 dopant synergistically reduced the sintering temperature of TiO2.

TiO2/CuxO (1 (Photocatalytic and Antipathogenic Effects of TiO2/CuxO (1)

  • 조성우;이용임;김이한;정동운
    • 대한화학회지
    • /
    • 제57권4호
    • /
    • pp.483-488
    • /
    • 2013
  • $CuCl_2$로부터 용액합성법에 의해 CuO를 제조하였다. $CuCl_2$를 용액에 첨가하기 전에 용액내에 anatase형 $TiO_2$ 입자를 분산시켜 CuO가 형성되는 과정에서 $TiO_2$/CuO 결합입자를 합성하였다. 얻어진 $TiO_2$/CuO에 적당량의 글루코스를 가하여 반응시켜 CuO의 일부를 $Cu_2O$로 환원시켰다. 얻어진 시료 $TiO_2/Cu_xO$ (1$TiO_2/Cu_xO$ 복합체는 anatase와는 다르게 가시광선 전 영역에서 흡광이 발생했으며 당연한 결과로 태양광선에서 $TiO_2/Cu_xO$ 복합체의 광촉매 활성은 anatase $TiO_2$에 비하여 매우 뛰어난 것으로 나타났다. 또한 $TiO_2/Cu_xO$ 복합체의 항균성이 대단히 뛰어난 것으로 나타났다.

Electrochemical Detection of Hydroxychloroquine Sulphate Drug using CuO/GO Nanocomposite Modified Carbon Paste Electrode and its Photocatalytic Degradation

  • G. S. Shaila;Dinesh Patil;Naeemakhtar Momin;J. Manjanna
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.15-31
    • /
    • 2024
  • The antimalarial drug hydroxychloroquine sulphate (HCQ) has taken much attention during the first COVID-19 pandemic phase for the treatment of severe acute respiratory infection (SARI) patients. Hence it is interest to study the electrochemical properties and photocatalytic degradation of the HCQ drug. Copper oxide (CuO) nanoparticles, graphene oxide (GO) and CuO/GO NC (nanocomposite) modified carbon paste electrodes (MCPE) are used for the detection of HCQ in an aqueous medium. Electrochemical behaviour of HCQ (20 μM) was observed using CuO/MCPE, GO/MCPE and CuO/GO NC/MCPE in 0.1 M phosphate buffer at pH 7 with a scan rate of 20 to 120 mV s-1 by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) of HCQ was performed for 0.6 to 16 μM HCQ. The CuO/GO NC/MCPE showed a reasonably good sensitivity of 0.33 to 0.44 μA μM cm-2 with LOD of 69 to 92 nM for HCQ. Furthermore, the CuO/GO NC was used as a catalyst for the photodegradation of HCQ by monitoring its UV-Vis absorption spectra. About 98% was degraded in about 34 min under visible light and after 4 cycles it was 87%. The improved photocatalytic activity may be attributed to decrease in bandgap energy and enhanced ability for the electrons to migrate. Thus, CuO/GO NC showed good results for both sensing and degradation applications as well as reproducibility.

Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구 (Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction)

  • 변창기;임효빈;박지혜;백정훈;정정민;윤왕래;이광복
    • 청정기술
    • /
    • 제21권3호
    • /
    • pp.200-206
    • /
    • 2015
  • 산화세륨의 첨가가 수성가스전이반응 효율에 미치는 영향을 조사하기 위해서, Cu-ZnO-CeO2촉매를 공침법을 사용하여 제조하였다. 일련의 Cu-ZnO-CeO2 촉매는 Cu 함량(50 wt%)을을 고정시키고 산화세륨(CeO2 기준으로, 0, 5, 10, 20, 30, 40 wt%)의 함량을 조절하면서 제조되었고 이를 이용하여 GHSV 95,541 h-1의 기체 유량범위, 200~400 ℃의 온도범위에서 수성가스전이반응 촉매활성이 측정되었다. 또한, BET, SEM, XRD, H2-TPR, XPS 분석을 통하여 촉매특성이 분석되었다. CeO2가 첨가된 촉매는 구리 분산도와 결합에너지 같은 촉매특성의 다양한 변화를 나타내었다. 10wt%의 CeO2가 최적의 첨가량으로 판단되며 이때 촉매는 가장 낮은 온도에서 환원이 일어났으며 반응에서 가장 높은 촉매 활성을 보였다. 또한 CeO2가 첨가된 촉매는 CeO2가 첨가되지 않는 촉매와 비교하여 높은 온도영역에서 활성이 향상되었다. 따라서, 최적 조성의 CeO2첨가는 높은 구리 분산도, 낮은 결합에너지, 구리 금속의 응집 방지를 유도하여 높은 촉매활성을 유도하였다.

Effect of temperature and oxygen partial pressure on the growth and development of Cu2O nanorods by radio frequency magnetron sputtering

  • You, Jae-Lok;Jo, Kwang-Min;Kim, Se-Yoon;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.102-103
    • /
    • 2013
  • As an important p-type semiconductor metal oxide with a narrow band gap (1.2 - 2.6eV), copper oxide (Cu2O) has been studied because of its various applications as material for heterogeneous catalysts, gas sensors, optical switch, lithium-ion electrode materials, field emission devices, solar cells. The fundamental properties of oxide-semiconductor can be greatly affected by the surface morphology, size, geometry and spatial orientation.

  • PDF

수열합성법을 이용한 Cu2O 입자의 합성 (Synthesis of Cu2O Particles Using the Hydrothermal Method)

  • 신성민;김경환;홍정수
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.63-67
    • /
    • 2024
  • In this study, we successfully synthesized copper oxide (Cu2O) particles through a hydrothermal method at a relatively low temperature (150℃). The synthesis involved the precise control of molar concentrations of NaOH. Notably, Cu2O particles were effectively synthesized when NaOH concentrations of 0.15 M and 0.20 M were utilized. While attempts were made at different molar concentrations, the synthesis of pure Cu2O particles was only achieved at concentrations of 0.15 M and 0.20 M. In this experimental investigation, Cu2O synthesized under these specific conditions exhibited absorption characteristics within the wavelength range of 640 to 570 nm, consistently exhibiting a band gap energy of 1.9 eV. These Cu2O particles, characterized by their small band gap energy and straightforward synthetic method, hold significant promise for various applications including semiconductors and solar cells.

Brown Oxide 형성이 리드프레임/EMC 계면의 파괴인성치에 미치는 영향 (Effect of Brown Oxide Formation on the Fracture Toughness of Leadframe/EMC Interface)

  • 이호영;유진
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.531-537
    • /
    • 1999
  • A copper based leadframe was oxidized in brown-oxide forming solution, then the growth characteristics of brown oxide and the effect of brown-oxide formation on the adhesion strength of leadframe to epoxy molding compound (EMC) were studied by using sandwiched double cantilever beam (SDCB) specimens. The brown oxide is composed of fine acicular CuO, and its thickness increased up to ~150 nm within 2 minutes and saturated. Bare leadframe showed alomost no adhesion to EMC, while once the brown-oxide layer formed on the Surface of leadframe, the adhesion strength increased up to ~80 J/$\m^2$ within 2 minutes. Correlation between oxide thickness, $\delta$ and the adhesion strength in terms of interfacial fracture toughness, $G_{c}$ was linear. Considering the above results, we might conclude that the main adhesion mechanism of brown-oxide treated leadframe to EMC is mechanical interlocking, in which fine acicular CuO plays a major role.e.

  • PDF