• 제목/요약/키워드: Copper/zinc superoxide dismutase

검색결과 48건 처리시간 0.024초

Glycation of Copper, Zinc-Superoxide Dismutase and its Effect on the Thiol-Metal Catalyzed Oxidation Mediated DNA Damage

  • Park, Jeen-Woo;Lee, Soo-Min
    • BMB Reports
    • /
    • 제28권3호
    • /
    • pp.249-253
    • /
    • 1995
  • The nonenzymatic glycation of copper, zinc-superoxide dismutase (Cu,Zn-SOD) led to inactivation and fragmentation of the enzyme. The glycated Cu,zn-SOD was isolated by boronate affinity chromatography. The formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in calf thymus DNA and the generation of strand breaks in pBhiescript plasmid DNA by a metal-catalyzed oxidation (MCO) system composed of $Fe^{3+}$, $O_2$, and glutathione (GSH) as an electron donor was enhanced more effectively by the glycated CU,Zn-SOD than by the nonglycated enzyme. The capacity of glycated Cu,Zn-SOD to enhance damage to DNA was inhibited by diethylenetriaminepentaacetic acid (DETAPAC), azide, mannitol, and catalase. These results indicated that incubation of glycated CU,Zn-SOD with GSH-MCO may result in a release of $Cu^{2+}$ from the enzyme. The released $Cu^{2+}$ then likely participated in a Fenton-type reaction to produce hydroxyl radicals, which may cause the enhancement of DNA damage.

  • PDF

Inactivation of Copper, Zinc Superoxide Dismutase by the Lipid Peroxidation Products Malondialdehyde and 4-Hydroxynonenal

  • Koh, Young-Ho;Yoon, Seon-Joo;Park, Jeen-Woo
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.440-444
    • /
    • 1999
  • Membrane lipid peroxidation processes yield reactive aldehydes that may react with copper,zinc superoxide dismutase (Cu,Zn SOD), one of the key antioxidant enzymes against oxidative stress. We investigated this possibility and found that exposing Cu,Zn SOD to malondialdehyde (MDA) or 4-hydroxynonenal (HNE) caused the loss of dismutase activity, cross-linking of peptides, and an increase in protein oxidation, reflected by the increased level of carbonyl groups. When Cu,Zn SOD that had been exposed to MDA or HNE was subsequently analyzed by amino acid analysis, histidine content was found to be significantly lost. Both MDA-and HNE-treated Cu,Zn SOD were resistant to proteolysis, which may imply that damaged proteins exist in vivo for a longer period of time than the native enzyme. The lipid peroxidation-mediated damage to Cu,Zn SOD may result in the perturbation of cellular antioxidant defense mechanisms, and subsequently lead to a pro-oxidant condition.

  • PDF

Changes of superoxide dismutase and glutathione peroxidase in light damaged rat retina

  • Kaidzu, Sachiko;Tanito, Masaki;Takanashi, Taiji;Ohira, Akihiro
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.430-432
    • /
    • 2002
  • The changes in expression of copper-zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPX) in light-damaged rat retinas were examined. Sprague-Dawley rats (male, 6-weeks-old) were maintained on a cyclic photoperiod (12 hours light and 12 hours darkness) for 2 weeks. The illumination intensity during the light period was 80 lux. To induce light damage to the retina, a high-intensity illumination (3000-lux) was applied to the animals for 24 hours. After light exposure, the animals were returned to cyclic lighting. Eyes were enucleated 12 and 24 hours after light exposure started or 1,3, and 7 days after light exposure ended. Eyes were fixed and embedded in paraffin wax. Tissues were cut into 4${\mu}{\textrm}{m}$-thick sections. Sections were immunostained using antibody against CuZn-SOD, Mn-SOD, GPX and 8-hydroxy-deoxyguanocine (8-OHdG) as oxidative stress marker. 8-OHdG was observed in the outer nuclear layer (ONL) and retinal pigment epithelium (RPE) during light exposure. In light-damaged retinas CuZn-SOD labeling was up regulated in the ONL and RPE. Mn-SOD labeling was up regulated in rod inner segments (RIS) during light exposure and that in the RPE was up regulated after exposure. GPX labeling was observed in rod outer segments (ROS) during light exposure. GPX labeling was also observed in the RPE during and after light exposure. All three enzymes were observed in the outer retina, which suffered light damage, but occurred in defferent layers except within the RPE, in which case all three were expressed. These enzymes may play complementary roles as protective factors in light-damaged retinas.

  • PDF

Expression and Characterization of Recombinant Human Cu,Zn-Superoxide Dismutase in Escherichia coli

  • Kang, Jung-Hoon;Choi, Bong-Jin;Kim, Sung-Moon
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 1997
  • Expression of human Cu.Zn-superoxide dismutase (SOD) with activity comparable to human erythrocyte enzyme was achieved in E. coli B21(DE3) by using the pET-17b expression vector containing a T7 promoter. Recombinant human SOD was found in the cytosol of disrupted bacterial cells and represented > 25% of the total bacterial proteins. The protein produced by the E. coli cells was purified using a combination of ammonium sulfate precipitation, Sephacryl S-100 gel filtration and DEAE-Sephacel ion exchange chromatography. The recombinant Cu,Zn-SOD and human erythrocyte enzyme were compared using dismutation activity, SDS-PAGE and immunoblotting analysis. The mass of the subunits was determined to be 15,809 by using a electrospray mass spectrometer. The copper specific chelator. diethyldithiocarbamate (DOC) reacted with the recombinant Cu,Zn-SOD. At $50{\mu}M$ and $100{\mu}M$ concentrations of DOC, the dismutation activity was not inhibited for one hour but gradually reduced after one hour. This result suggests that the reaction of DOC with the enzyme occurred in two distinct phases (phase I and phase II). During phase I of this reaction, one DOC reacted with the copper center, with retention of the dismutation activity while the second DOC displaced the copper, with a loss of activity in phase II.

  • PDF

일부 여대생의 구리와 아연 영양상태 평가 (Evaluation of Zinc and Copper Status in Korean College Women)

  • 김정혜
    • Journal of Nutrition and Health
    • /
    • 제32권3호
    • /
    • pp.277-286
    • /
    • 1999
  • This study was conducted to assess dietary intake and nutritional status of zinc and copper in Korean college women. Dietary survey was conducted by 24-hour recall method and fasting serum samples were collected from 111 apparently healthy subjects. Intake levels of zinc and copper were calculated using newly developed database for Zn & Cu of Korea food. Serum levels of Zn, Cu and activities of ALP, EC-SOD were measured from fasting serum sample. Mean daily zinc and copper intakes were 6.72mg/day(56.0% RDA) and 1.11mg/day respectively. Mean values of serum ALP activity, zinc and copper concentration were 43.9U/L, 14.8umol/1, 15.5umol/1and these values were mostly within normal range. EC-SOD activitis of the subjects were low and had no correlation with intake or serum levels of Zn, Cu. In conclusion, these results show that zinc and copper intake of Koran college women are lower than those from other counties but higher than those of adults in rural area of Korea. Their serum levels of Zn, Cu, ALP are relatively normal. These results indicate that marginal deficiency of Zn and Cu may be quite prevalent in these subjects but serum indicators measured may not be sensitive enough to detect such marginal deficiency. Further study in needed to develop a biochemical index sensitive enough to evaluate Zn and Cu status.

  • PDF

일차 배양한 백서 피부섬유아세포에서 Paraquat 독성에 미치는 SOD 와 Catalase 의 영향 (Effects of Copper / Zinc-Containing Superoxide Dismutase (Cu, Zn-SOD) and Catalase on Paraquat-Induced Injury in Primary Cultured Rat Skin Fibroblast)

  • 차종희;유의경
    • 대한화학회지
    • /
    • 제38권1호
    • /
    • pp.74-79
    • /
    • 1994
  • Cu, Zn-SOD 억제제인 diethyldithiocarbamate(DDC)가 paraquat(PQ)에 의한 세포독성에 미치는 영향을 배양한 백서 섬유아세포에 DDC(30 mM)를 전처치하여 PQ를 100${\mu}M$이 되게 첨가해 배양하여 생존한 세포를 Carmichael 등의 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT)법에 의해 측정한 결과 DDC 전처치 대조군과 DDC 전처치 PQ 첨가군 사이에 유의한 세포생존율의 차이는 없었다. Catalase 억제제인 3-amino-1,2,4-triazol(AT)를 전처치하여 PQ를 100${\mu}$M을 첨가하고 배양한 섬유아세포의 생존율을 MTT법에 의해 측정한 결과 AT 전처치 PQ 첨가군에서 유의한 세포생존율의 감소를 나타냈다. 섬유아세포를 PQ(200${\mu}$M)로 처치한 후 Cu, Zn-SOD를 첨가하여 생존한 세포수를 각각 MTT법에 의해 측정한 결과 Cu, Zn-SOD 첨가로 인한 세포생존율의 유의한 변화는 없었다. PQ 처치군에 catalase 첨가로 PQ처리 대조군에 비하여 생존한 세포수가 유의하게 증가되었다. 이상의 실험결과 일차배양한 백서 섬유아세포를 AT로 전처리하면 PQ독성이 증가되고, catalase 첨가로 독성이 감소되며, DDC전처치나 Cu, Zn-SOD첨가로 PQ에 의한 세포생존에 미치는 영향이 적은 점으로 미루어, PQ 독성은 surperoxide보다 과산화수소농도와 더 밀접한 연관성이 있는 것으로 추정된다.

  • PDF

DNA Cleavage Induced by the Reaction of Salsolinol with Cu,Zn-Superoxide Dismutase

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2329-2332
    • /
    • 2007
  • Salsolinol, endogenous neurotoxin, is known to be involved in the pathogenesis of Parkinson's disease (PD). In the present study, we have investigated the oxidative damage of DNA induced by the reaction of salsolinol with Cu,Zn-SOD. When plasmid DNA incubated with salsolinol and Cu,Zn-SOD, DNA cleavage was proportional to the concentrations of salsolinol and Cu,Zn-SOD. The salsolinol/Cu,Zn-SOD system-mediated DNA cleavage was significantly inhibited by radical scavengers such as mannitol, ethanol and thiourea. These results indicated that free radicals might participate in DNA cleavage by the salsolinol/Cu,Zn-SOD system. Spectrophotometric study using a thiobarbituric acid showed that hydroxyl radical formation was proportional to the concentration of salsolinol and was inhibited by radical scavengers. These results indicated that hydroxyl radical generated in the reaction of salsolinol with Cu,Zn-SOD was implicated in the DNA cleavage. Catalase and copper chelators inhibited DNA cleavage and the production of hydroxyl radicals. These results suggest that DNA cleavage is mediated in the reaction of salsolinol with Cu,Zn-SOD via the generation of hydroxyl radical by a combination of the oxidation reaction of salsolinol and Fenton-like reaction of free copper ions released from oxidatively damaged SOD.

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim;Jiyeon Han
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.575-583
    • /
    • 2023
  • Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

염증성 치은에서 superoxide dismutase isoform의 발현에 대한 연구 (Expression of Superoxide Dismutase Isoforms in Inflamed Gingiva)

  • 나혜진;김옥수;박병주
    • Journal of Periodontal and Implant Science
    • /
    • 제36권1호
    • /
    • pp.97-112
    • /
    • 2006
  • 유리 라디칼과 활성 산소종, 산화방지제 간의 불균형이 염증성 구강내 질환의 발생과 진행에 있어 중요한 역할을 한다는 주장이 제기되었고 최근에는 만성 염증성 치주질환에서도 산화에 의한 소실이 관찰되었다. 다양한 내적인 항산화 방어 기전 중 superoxide dismutase 가 $O_2$$H_2O_2$로 효과적으로 전환시킴으로써 활성산소종에 대한 일차적인 방어를 맡고 있다. 현재까지 인간에서 발견된 superoxide dismutase 는 cytoplasmic copper-zinc SOD와 mitochondrial manganase SOD, extracellular SOD의 3가지 아형이다. 이번 연구는 만성 치주질환을 가전 환자의 치주조직에서 효소 항산화제인 SOD의 발현정도를 알아봄으로써 질환조직 내의 산화자극 정도를 평가해 보고자하였다. 전남대학교 치주과에 내원한 33명의 만성 치주질환자와 20명 의 임상적으로 건강한 대상으로부터 조직을 얻어 Cu/Zn-SOD와 Mn-SOD, EC-SOD를 이용한 면역조직화학 염색을 시행하였다. 임상적 소견과 조직학적 소견이 일치하지 않아 조직학적 소견을 기준으로 건강한 조직, 경도, 중등도, 중도 치주질환 조직으로 그룹을 나누고 완전한 상피와 결합조직을 가진 27개의 표본에 대한 분석을 시행하였다. 치주질환 조직에서 건강한 조직에 비해 Cu/Zn-SOD가 상피의 기저층과 상피에 근접한 결합조직에서 발현되고 Mn-SOD는 염증이 증가함에 따라 크게 상피의 과립증과 각화층, 그리고 상피에 근접한 결합조직에서 발현됨으로써 활성산소종이 치주조직 파괴에 관여한다는 것을 알 수 있었다. 세 아형 모두 혈관주위에서 발현되었고 특히 EC-SOD는 작은 모세혈관주위에서만 발현되었으나 염증에 의해 혈관벽이 두꺼워지고 혈관 수가 증가한 곳에서 뚜렷하게 염색되었다. 이번 연구는 염증성 치주조직내 증가된 SOD의 활성이 치주질환자의 산화자극 정도와 관련되어 있음을 시사하였다.

Genomic Structure of the Cu/Zn Superoxide Dismutase(SOD1) Gene from the Entomopathogenic Fungus, Cordyceps pruinosa

  • Park, Nam Sook;Jin, Byung Rae;Lee, Sang Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제39권2호
    • /
    • pp.67-73
    • /
    • 2019
  • The genomic structure of the Cu/Zn superoxide dismutase (SOD1) gene from the entomopathogenic fungus, Cordyceps pruinosa was characterized. The SOD1 gene of C. pruinosa spans 947 nucleotides and consisted of four exons encoding for 154 amino acids and three introns. Four exons of the SOD1 gene are composed of 13, 331, 97 and 20 nucleotides respectively. Homology search of amino acid sequences of the SOD1 gene of C. pruinosa with another 13 fungi species showed higher sequence similarity of 69% ~ 95% and had the most highest sequence identity of 95% with Beauveria bassiana and Cordyceps militaris, which can easely infect domesticated Bombyx mori and another wild lepidopteran species in artificial or natual manner of infection. This SOD1 gene sequence showed copper, zinc and beta-barrel fold sites. Homology search showed that the Cu/Zn SOD1 gene from the entomopathogenic fungus, C. pruinosa is an orthologous gene homolog present in different species of organism whose ancestor predates the split between the relating species. In addition, C. pruinosa SOD1 gene is placed together within the ascomycetes group of fungal clade. From these results it is concluded that C. pruinosa SOD1 gene is orthologous gene having the same or very similar functions with a common evolutionary ancestor.