• Title/Summary/Keyword: Copper(II)

Search Result 556, Processing Time 0.047 seconds

Differential Pulse Voltammetric Determination of Copper(II) Using Glassy Carbon Electrodes Modified with Nafion-DTPA-Glycerol (Nafion-DTPA-Glycerol이 수식된 유리탄소전극을 사용한 미분펄스 전압전류법에 의한 구리(II)이온의 측정)

  • 박찬주;박은희;정근호
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.115-122
    • /
    • 2004
  • A glassy carbon electrode(GCE) modified with nafion-DTPA (diethylene triamine-pentaacetic acid)-glycerol is used for the highly selective and sensitive determination of a trace amount of Cu(II). Various experimental parameters, which influenced the response of nafion-DTPA-glycerol modified electrode to Cu(II), are optimized. The Copper(II) is accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface is characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry(DPV). The electrochemical response is evaluated with respect to concentration of modifier, pH and preconcentration time, quiet time, copper(II) concentration, and other variables. A linear range is obtained in the concentration range 1.0${\times}$10$^{-8}$ M-1.0${\times}$10$^{-6}$ MCu(II) with 7 min preconcentration time. The detection limit(3s) is as low as 2.36${\times}$10$^{-8}$ M (1.50 ppb).

Effects of N-and C-Substituents on Protonation of 14-Membered Tetraaza Macrocycles and Formation of their Copper(II) and Nickel(II) Complexes

  • Shin-Geol Kang;Mi-Seon Kim;Jang-Sik Choi;Moon Hwan Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.594-598
    • /
    • 1993
  • The protonation constants of the 14-membered tetraaza macrocycles A(3,14-dimethyl-2,6,13,17-tetraazatricyclo$[l6.4.0^{1,18}.0^{7,12}]$docosane) and B(2,3,6,13,14,17-hexamethyl-2,6,13,17-tetraazatric yclo-[l6.4.$0^{1,18}.0^{7,12}$]docosane) were measured by potentiometry. The formation constants of each of these ligands with copper(II) and nickel(II) were determined by an out-of-cell spectrophotometric method. The results indicate that the per-N-methylated macrocycle B exhibits much higher selectivity for complex formation with copper(II) over nickel(II) ion than A and other related 14-membered tetraaza macrocycles. The effects of the N-and C-substituents on the basicity and the metal ion selectivity of the ligands are discussed. The synthesis and properties of copper(II) and nickel(II) complexes of B are also described.

Photocurrent Multiplication Process in OLEDs Due to a Crystalline of Hole Injection Layer of Copper(II)-phthalocyanine and a Light Irradiation (유기발광소자내 정공주입층 Copper(II)-phthalocyanine의 결정 및 광원에 따른 Photocurrent 증폭 연구)

  • 임은주;박미화;윤순일;이기진;차덕준;김진태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.622-626
    • /
    • 2003
  • We report the electrical properties of organic light emitting diodes (OLEDs) depending on the crystal structure of hole injection layer of copper(II)-phthalocyanine(CuPc) and the light irradiation the carrier mobility of copper(II)-phthalocyanine(CuPc) of light source. OLEDs were constructed with indium tin oxide(ITO)/CuPc/triphenyl-diamin(TPD)/tris-(8-hydroxyquinoline)aluminum(Alq$_3$)/Al.Photocurrent multiplication of OLEDs was varied by the heat-treatment condition of CuPc thin film and the light irradiation.

Synthesis and Characterization of Dichloro and Dibromo(2-(dimethylaminomethyl)thiophene) Copper(II) Complexes

  • Kim, Young-Inn;Choi, Sung-Nak;Ro, Chul-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.549-553
    • /
    • 1994
  • The 2-(dimethylaminomethyl)thiophene (dmamt) complexes with copper(II) chloride and bromide were prepared and characterized by optical, EPR, XPS spectroscopies and magnetic susceptibility measurements. The low-energy absorption band above 850 nm and the relatively small EPR hyperfine coupling constant ($A_{//}{\simeq}$125 G) indicate the pseudotetrahedral site symmetry around copper(II) ion both in Cu(dmamt)$Cl_2$ and Cu(dmamt)$Br_2$ complexes. The higher satellite to main peak intensity of Cu $2P_{3/2}$ core electron binding energy in XPS spectra also supports the pseudotetrahedral geometry around the copper(II) ions having $CuNSX_2$ chromophores. The distortion from square-planar to pseudotetrahedral symmetry is likely to arise from the steric hindrance of the bulky dmamt ligand in the complex. Magnetic susceptibility study shows that these compounds follow Curie-Weiss law in the temperature range of 77-300 K with positive Weiss constant exhibiting the ferromagnetic interaction between copper(II) ions in solid state.

Growth Inhibition and Apoptosis Induction of Gastric Cancer Cells by Copper (II) Glycinate Complex

  • JE CHUL LEE;JEONG, YONG WOOK;KISUNG KIM;JAE YOUNG OH;JONG CHUN PARK;JUNG HWAN BANG;ANG WON CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.394-399
    • /
    • 2003
  • The in vitro cytotoxic effects of newly synthesized copper (II) glycinate complex were investigated in two gastric cancer cell lines of SNU484 and SNU638 cells. The complex inhibited the growth and decreased the viability of both gastric cancer cells in a dose-dependent manner. Gastric cancer tells treated with the complex exhibited the features of apoptosis, as demonstrated by fragmentation of chromosomal DNA, activation of caspase-3-like enzyme, and cleavage of poly[ADP-ribose] polymerase (PARP). With the treatment of copper (II) glycinate complex, the active form of caspase-3 was observed in SNU484 cells, but not in SNU638 cells, indicating that an alternative pathway of apoptosis might have been triggered in SNU638 cells. In conclusion, copper (II) glycinate complex induces apoptosis of SNU484 and SNU638 gastric cancer cells, and it is suggested that novel copper (II) glycinate complex is highly active against human gastric cancer cells.

Crystal Structures and Characterization of Copper(II) Complexes of N,N,N'N'-Tetrakis(2-pyridylmethyl)-1,2-ethanediamine

  • Yoon, Doo-Cheon;Lee, Uk;Oh, Chang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.796-800
    • /
    • 2004
  • The structure of [Cu(tpen)]$(ClO_4)_2$ (tpen = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethanediamine) has been identified by X-ray crystallography. The copper(II) ion is surrounded by two amine N atoms and three pyridine N atoms of the ligand, making a distorted trigonal-bipyramid. Among the six potential N donor atoms (two amine N and four pyridine N atoms), only one pyridine N atom remains uncoordinated. We examined structural changes on addition of $Cl^-$ to $[Cu(tpen)]^{2+}$(1). The addition of $Cl^-$ in methanol resulted in the formation of a novel dinuclear copper(II) complex $[Cu_2Cl_2(tpen)](ClO_4)_2{\cdot}H_2O$. The structure of the dinuclear complex was verified by X-ray crystallography. Each copper(II) ion in the dinuclear complex showed a distorted square planar geometry with two pyridine N atoms, one amine N atom and one $Cl^-$ ion.

Simulation of Temperature-Dependent EPR Spectra of Mixed-Valence Copper (II)-Copper (I)-Complexes

  • So, Hyun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.111-114
    • /
    • 1987
  • Temperature-dependent, solution EPR spectra of two mixed-valence copper(II)-copper(I) complexes have been simulated by using modified Bloch equations. The transition probability for the intramolecular electron transfer is determined from the simulation. The transition probabilities have been fitted to the Arrhenius equation to derive the activation energies. The transition probability also varies according to the solvent used.

Studies on Copper (II)-Oxamidoxime Complex by Spectrophotometric Method (分光光度法에 依한 Cu(II)-Oxamidoxime의 錯物에 關한 硏究)

  • Oh, Sang O.;Do, Che-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.45-48
    • /
    • 1965
  • Stability constant, composition of copper (II)-oxamidoxime complex were determined by spectrophotometric method. The ratio of copper (II) and oxamidoxime in the above complex was 1 : 1, and its stability constant was calculated to be $2.4{\times}10^{22}$. The complex solution gave constant absorbancy between the pH range of 4.5 to 6 at 600 $m{\mu}$ in which Beer's law applicable in the concentration range of 0.3 to 2.0 ppm studied in this work. It was noted that some metals such as Fe(III), Ni(II), Co(II), U(VI) interfere copper determination by this method.

  • PDF

Electrochemical Properties of Binuclear Tetradentate Schiff Base Cobalt(II), Nickel(II) and Copper(II) Complexes in Nonaqueous Solvents. (V) (비수용매에서 이핵성 네자리 Schiff Base Cobalt(II), Nickel(II) 및 Copper(II) 착물들의 전기화학적 성질 (제 5 보))

  • Chjo Ki-Hyung;Choi Yong-Kook;Lee Song-Ju;Kim Chan-Young;Rim Chae-Pyeong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.709-719
    • /
    • 1992
  • We synthesized the binuclear tetradentate Schiff base cobalt(II), nickel(II) and copper(II) complexes such as [Co(II)_2(TSBP)(L)_4], [Ni(II)_2(TSBP)(II)_4] and [Cu(II)_2(TSBP)] (TSBP: 3,3',4,4'-tetra(salicylideneimino)-1,1'-biphenyl, L: Py, DMSO and DMF). We identified the binucleated structure of these complexes by elemental analysis, IR-spectrum, UV-visible spectrum, T.G.A. and D.S.C. According to the results for cyclic voltammogram and differential pulse polarogram of 1 mM complexes in nonaqueous solvents included 0.1M TEAP-L (L; Py, DMSO and DMF) as supporting electrolyte, it was found that diffusionally controlled redox processes of four steps through with one electron for binucleated Schiff base Cobalt(II) complex was Co(III)_2 {^\longrightarrow \\_\longleftarrow^e^-}Co(III)Co(II)_2{^\longrightarrow \\_\longleftarrow^e^-}Co(II){^\longrightarrow \\_\longleftarrow^e^-}Co(I){^\longrightarrow \\_\longleftarrow^e^-}Co(I)_2 and two steps with one electron for Nickel(II) and Copper(II) complexes were M(II)_2 {^\longrightarrow \\_\longleftarrow^e^-}M(I)M(I){^\longrightarrow \\_\longleftarrow^e^-}M(I)_2 (M; Ni and Cu) in nonaqueous solvents.

  • PDF