• Title/Summary/Keyword: Coordinates transformation

Search Result 273, Processing Time 0.026 seconds

A Study on the Acquisition of Geoidal Height by Means of Global Positioning System (GPS에 의한 지형의 높이정보 획득에 관한 연구)

  • Kang, Joon-Mook;Lee, Yong-Chang;Park, Pil-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.159-169
    • /
    • 1993
  • As Global Positioning System is able to provide 24-hour all weather surveying capability and high precision survey in three dimension, expected that the extensive use of GPS to support geophysics, geophysics, millitary and time correction etc. But in order to use the GPS results effectively, we have to solve problems about coordinates transformation relating the WGS84 to Bessel Datums and development of the accurate geoid undulation model. In this paper, we derive polynomial model equations about geoid undulation around local area(longitude $126^{\circ}{\sim}129^{\circ}$, latitude $36^{\circ}{\sim}37^{\circ}$) in Korea by GPS/Leveling method, also study the geoidal height calcaulation methods supplemented by Earth Gravitational Models (OSU981A, OSU86F).

  • PDF

Study on Fine-tuning of Boundary for World Geodetic Transformation of a Digital Cadastre (경계점좌표등록지역의 세계측지계변환을 위한 경계미세조정에 관한 연구)

  • KIM, Chang-Hwan;LEE, Won-Hui
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.15-23
    • /
    • 2017
  • The WGS conversion project of cadastral drawing (promoted by the Ministry of Land) is not able to reflect the cadastral registration due to subtle differences such as area and location. When converting the digital cadastral region to the world geodetic system, the boundary point coordinates must be changed to the legal coordinate units. However, there is a phenomenon that occurs in which the minute area changes do not coincide with the area registered in the cadastral registration when the coordinate unit is changed. In this study, we have developed a method to adjust many parcels collectively by applying a passive fine-tuning method used in cadastral resurvey project to solve these problems. Total 1, total 2+1, interval 1, interval 2+1, etc. were classified based on the number of parcels that need to be considered for the range of adjustment and the area condition. The analysis of the experimental area (after developing SW for comparison of each method) showed that the total 2+1 method is suitable for the location accuracy and the interval 2+1 method is suitable for the temporal efficiency.

The Kinematic Analysis of the Last Approach Stride and Take-off Phase of BKH Athlete in the High Jump (남자 높이뛰기 BKH 선수를 중심으로 한 도움닫기 마지막 1보와 발구름 국면의 운동학적 분석)

  • Yoon, Hee-Joong;Kim, Tae-Sam;Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.105-115
    • /
    • 2005
  • This study was investigated the kinematic factors of the last approach strides and. take off motion for the skill improving of BKH elite male athlete. 'The subjects chosen for the study were BKH and. KASZCZYK Emillian male athletes who were participated in 2003 Dae-Gu Universiad Games. Three high speed video cameras set in 60frames/s setting were used. for recording from the last approach strides to the apex position. After digitizing motion, the Direct Linear Transformation(DLT) technique was employed to obtain 3-D position coordinates, The kinematic factors of the distance, velocity and angle variable were calculated for Kwon3D 3.1. The following conclusions were drawn; 1. It showed longer stride length, as well as faster horizontal and lateral velocity than the success trial during the approach phase. For consistent of the approach rhythm, it appeared that the subject should a short length for obtain the breaking force by the lower COG during the approach phase. 2. The body lean angle showed a small angle by a high COG during the take-off phase. For obtain the vertical displacement of the COG and a enough space form the bar after take-off, it appeared that the subject should increase the body lean angle. 3. For obtain the vertical force during the takeoff phase, it appeared that the subject should keep straight as possible the knee joint. Therefor, the subject can be obtain a enough breaking force at the approach landing.

Real-Time Dynamic Analysis of Vehicle with Experimental Vehicle Model (실험기반 차량모델을 이용한 실시간 차량동역학 해석)

  • Yoo, Wan-Suk;Na, Sang-Do;Kim, Kwang-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1003-1008
    • /
    • 2012
  • The paper presents an Experimental Vehicle Model (EVM), that utilizes the kinematic characteristics of suspensions from SPMD test data. The relative displacement and orientation of a wheel with respect to the body are represented as a function of the vertical displacement of the wheel. The equations of motion of the vehicle are formulated in terms of local coordinates that do not require coordinate transformation, which improves the efficiency of dynamic analysis. The EOM was modularized for each suspension model, and a $6{\times}6$ vehicle model was obtained by combining six suspensions. The analysis results were compared with ADAMS to verify the accuracy of the EVM. This study also verifies the feasibility of real-time simulation with the developed EVM. For a vehicle simulation for 1 ms, the real simulation time required within 20% of the prescribed time. This result shows that the EVM meets the real-time simulation requirements.

Annotation System using Spatial Augmented Reality Display with Half-slivered Mirror (반투영 거울 기반 공간 증강 현실 환경의 전시물 안내 시스템)

  • Kim, Jung-Hoon;Lee, Young-Bo;Park, Hyun-Woo;Yun, Tae-Soo;Lee, Dong-Hoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.37-45
    • /
    • 2008
  • This paper proposes a half-silvered mirror display system designed to demonstrate useful information about things on display into the air. It helps the spectators gain quick access to information near the area where the things are put on display. This paper deals with three matters: First, tracking based on camera images created in real time enables the provision of information about the things that are both still and moving. Second, as information is output based on the real-time coordinates of things on display, the parallel processing-based tracking algorithm is used to ensure smooth transfer. Third, a half-mirror is placed in front of the display area to establish an augmented reality system and visual distortion caused by mirror angle is adjusted by the reflection transformation matrix. The objectives of this system are to arouse the spectators' interest in things on display and offer easy and quick access to information about them.

  • PDF

Closed-form based 3D Localization for Multiple Signal Sources (다중 신호원에 대한 닫힌 형태 기반 3차원 위치 추정)

  • Ko, Yo-han;Bu, Sung-chun;Lee, Chul-soo;Lim, Jae-wook;Chae, Ju-hui
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.78-84
    • /
    • 2022
  • In this paper, we propose a closed-form based 3D localization method in the presence of multiple signal sources. General localization methods such as TDOA, AOA, and FDOA can estimate a location when a single signal source exists. When there are multiple unknown signal sources, there is a limit in estimating the location. The proposed method calculates a cross-correlation vector of signals received by sensors having an array antenna, and estimates TDOA and AOA values from the cross-correlation values. Then, the coordinate transformation is performed using the position of the reference sensor. Then, the coordinate rotation is performed using the estimated AOA value for the transformed coordinates, and then the three-dimensional position of each emitter is estimated. The proposed method verifies its performance through computer simulation.

Calculation of Local Coordinate of Common Points for Coordinate Transformation by Trilateral Adjustment (좌표변환 공통점의 지역측지계 조정좌표 산출 - 삼변망조정계산의 활용 -)

  • Yang, Chul Soo;Kang, Sang-gu;Song, Wonho;Lee, Won Hui
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.103-115
    • /
    • 2024
  • Trilateral adjustment can complement the problem of transforming cadastral maps into World Geodetic Coordinate system. First, it is possible to determine adjusted coordinate of common points that match each other over a wide area. Second, calculations that focus on specific points can be performed. Third, a solution that maintains the shape of the regional network can be obtained through constraints. Thus, the point coordinates can be determined appropriately for the survey system. In addition, heterogeneous survey results that span regions with different coordinate origins can be calculated on a single origin coordinate. This improves the efficiency of the workflow in tranforming cadastral maps into World Geodetic Coordinate System.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

3D Modeling from 2D Stereo Image using 2-Step Hybrid Method (2단계 하이브리드 방법을 이용한 2D 스테레오 영상의 3D 모델링)

  • No, Yun-Hyang;Go, Byeong-Cheol;Byeon, Hye-Ran;Yu, Ji-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.7
    • /
    • pp.501-510
    • /
    • 2001
  • Generally, it is essential to estimate exact disparity for the 3D modeling from stereo images. Because existing methods calculate disparities from a whole image, they require too much cimputational time and bring about the mismatching problem. In this article, using the characteristic that the disparity vectors in stereo images are distributed not equally in a whole image but only exist about the background and obhect, we do a wavelet transformation on stereo images and estimate coarse disparity fields from the reduced lowpass field using area-based method at first-step. From these coarse disparity vectors, we generate disparity histogram and then separate object from background area using it. Afterwards, we restore only object area to the original image and estimate dense and accurate disparity by our two-step pixel-based method which does not use pixel brightness but use second gradient. We also extract feature points from the separated object area and estimate depth information by applying disparity vectors and camera parameters. Finally, we generate 3D model using both feature points and their z coordinates. By using our proposed, we can considerably reduce the computation time and estimate the precise disparity through the additional pixel-based method using LOG filter. Furthermore, our proposed foreground/background method can solve the mismatching problem of existing Delaunay triangulation and generate accurate 3D model.

  • PDF

Cobalt(II) Complex of 1,2-Bis(2,2'-bipyridyl-6-yl)ethane. Crystallization Process and Structural Analysis of Two Shapes of Crystals (1,2-비스(2,2'-디피리딜-6일)에탄의 코발트 착물. 두 가지 형태의 결정화 과정 및 구조 분석적 접근)

  • Park, Sung-Ho;Yoo, Kyung-Ho;Jung, Ok-Sang
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.421-427
    • /
    • 1999
  • Two shapes of crystals have been isolated by the interdiffusion of $Co(NCS)_2$ dissolved in methanol with 1,2-bis(2,2'-bipyridyl-6-yl)ethane (bbpe) dissolved in chloroform. The two crystals have been elucidated as $trans-Co^{II}(NCS)_2(bbpe)$ and $trans-Co^{II}(NCS)_2(bbpe){\cdot}2CHCl_3$, by X-ray crystallography, elemental analysis, IR, and thermal analysis. The two molecular structures are very similar except for the absence or presence of chloroform solvate molecules. The bbpe ligand coordinates to the cobalt(II) ion in an open-ended tetradentate mode, resulting in discrete mononuclear cobalt(II) complex. The cobalt atom adopts a typical octahedral arrangement with six nitrogen donating atoms with two NCS groups in trans positions. A significant solid-to-solid phase transition occurs presumably due to the change of conformationally flexible bbpe ligand. The formation of both crystals oeeurs in a successive two-step process, the formation of $trans-Co^{II}(NCS)_2(bbpe)$ and its transformation into $trans-Co^{II}(NCS)_2(bbpe){\cdot}2CHCl_3$. The thermal stability and favorable formation of the solvate crystals may be ascribed to the interaction between S atom of NCS group and Cl of chloroform.

  • PDF