• Title/Summary/Keyword: Coordinated Multi-point

Search Result 41, Processing Time 0.03 seconds

Utility Function-Based Scheduling in a Multi-Ship Network with Coordinated Multi-Point Transmission (협력적 다중 선박 네트워크에서 유틸리티 함수 기반의 스케줄링 기법)

  • Kim, Yunsung;Lee, Seong Ro;So, Jaewoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.538-545
    • /
    • 2014
  • This paper proposes a coordinated multi-point (CoMP) based dynamic transmission scheme in a downlink multi-ship network, where a central ship selects a ship in order to maximize the utility function. The proposed scheduling scheme dynamically decides to the usage of the coordinated multi transmissions and selects a user to be served for every frame, in order to the utility function on the basis of the throughput and fairness. In particular, the proposed utilify function based scheduling scheme aims to increase the quality of service of ships at the edge of cells. Under the proportional fair scheduling, the simulation results show that the proposed utility function-based scheduling improves the throughput of the ships at the cell edge with the little sacrifice of the system capacity.

The Operation Method of Coordinated Multi-point Transmission/Reception in Cloud Base Station (클라우드 기지국에서의 조정 다중점 송수신 운용 방법)

  • Park, Soon-Gi;Shin, Yeon-Seung;Song, Pyeong-Jung;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.10
    • /
    • pp.775-784
    • /
    • 2013
  • Mobile operators are considering a variety of technical measures to cope with the explosion of data while reducing TCO(Total Cost of Ownership) of their networks. In this paper, to investigate the possibility about one of such technical measures, system level simulation to evaluate the performance of the capacity and mobility was performed in cloud base station structure to apply coordinated multi-point transmission and reception. As a result, we find out that system capacity and mobility performance may be improved according to the scale and application area of cloud base station with the operation of coordinated multi-point transmission and reception, and these mutual causality can provide practical guidelines to mobile network's operation.

A Limit-Phase-Feedback-based Precoding Technique for CoMP (제한된 위상 피드백 기반의 CoMP를 위한 프리코딩 기법)

  • Kim, Tae-Young;Yoon, Eun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.784-789
    • /
    • 2011
  • In this paper, a precoder based on limited phase feedback is proposed to maximize user's receive signal-to-interference-plus-noise ratio (SINR) in coordinated multi-point (CoMP) coordinated scheduling / coordinated beamforming (CS/CB) precoding matrix indicator (PMI) scenario. Most conventional precoding techniques based on limited phase feedback have been considered in a single-cell environment. However, considering neighboring cells in a multi-cell environment, we enhance the conventional preocoding. method. First, to maximize receive SINR, precoding matrices are designed to maximize the serving cell's signal and to minimize the coordinated cells' signal. Also, a precoder which can be used in a limited bit feedback condition is suggested. Finally, the proposed precoder's performance is evaluated and compared with some other precoding techniques by using simulation under the CoMP CS/CB PMI scenario.

Performance Analysis of Coordinated Random Beamforming Technique in Multi-cell Environments

  • Lee, Jong-Min;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.393-398
    • /
    • 2010
  • For multi-cell environments, coordinated random beamforming technique in multiuser MIMO(multiple-input multiple-output) broadcast channel is considered. In order to mitigate severe interference at receivers, the multi-cell environments might require complex transmitter and receiver design because the scheduler decision based on full channel state information (CSI) in one cell must be intertwined with decision made by other cells' CSI. With limited CSI, however, this paper considers a scheme of randomizing transmitters' beamforming but being coordinated with other cell transmitters. The transmitters in each cell share random beamforming patterns and schedule data transmission within coherent scheduling period. The corandomized beams allow the users to be selected with the highest SINRs even in multi-cell environments. We analyze the performance of the proposed scheme. And numerical results show that the scheme achieves better performance than the conventional random beamforming when applying to multi-cell environments.

Performance Analysis of Coordinated Multi-Point with Scheduling and Precoding schemes in LTE-Advanced System (LTE-Advanced 시스템에서 스케줄링 및 프리코딩을 결합한 다중 포인트 협력 통신 기법의 성능 분석)

  • Kim, Bora;Moon, Sangmi;Malik, Saransh;Kim, Cheolsung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.27-33
    • /
    • 2013
  • In this paper, we design and analyze the performance of Coordinated Multi-Point (CoMP) techniques to the number of users for next-generation cellular systems. We perform Monte Carlo simulations with Long Term Evolution-Advanced (LTE-Advanced) and confirm the performance from the graph of the Cumulative Distribution Function (CDF). From simulation results, we show the significant performance gain when CoMP technique is used and also show better performance when we apply the various schemes additionally as scheduling and precoding.

Coordinated Multi-Point Communications with Channel Selection for In-building Small-cell Networks (건물 내 스몰셀 네트워크에서 채널 선택 기반 다중점 협력통신)

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.9-15
    • /
    • 2022
  • This paper proposes a coordinated multi-point communication (CoMP) method with channel selection to improve performance of a macro user equipment (MUE) in a dense small-cell network environment in a building located within coverage of a macro base station (MBS). In the proposed CoMP method, in order to improve the performance of the MUE located in the building, A small-cell base station (SBS) selects a channel with lower interference to the neighboring MUE and transmits appropriate signals to the MUE requiring CoMP. Simulation results show that the proposed CoMP method improves the performance of the MUE by up to 164% and 51%, respectivley, compared to a random channel allocation based traditional SBS network and CoMP method.

Robust Design of Coordinated Set Planning with the Non-Ideal Channel

  • Dai, Jianxin;Liu, Shuai;Chen, Ming;Zhou, Jun;Qi, Jie;Liang, Jingwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1654-1675
    • /
    • 2014
  • In practical wireless systems, the erroneous channel state information (CSI) sometimes deteriorates the performance drastically. This paper focuses on robust design of coordinated set planning of coordinated multi-point (CoMP) transmission, with respect to the feedback delay and link error. The non-ideal channel models involving various uncertainty conditions are given. After defining a penalty factor, the robust net ergodic capacity optimization problem is derived, whose variables to be optimized are the number of coordinated base stations (BSs) and the divided area's radius. By the maximum minimum criterion, upper and lower bounds of the robust capacity are investigated. A practical scheme is proposed to determine the optimal number of cooperative BSs. The simulation results indicate that the robust design based on maxmin principle is better than other precoding schemes. The gap between two bounds gets smaller as transmission power increases. Besides, as the large scale fading is higher or the channel is less reliable, the number of the cooperated BSs shall be greater.

New Beamforming Technique for ZF-THP Based on SSLNR (SSLNR 기반의 ZF-THP를 위한 새로운 빔형성 기법)

  • Cho, Yong-Seock;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.350-359
    • /
    • 2013
  • In this paper, Inter user interference elimination algorithm based on Block Diagonal Geometric Mean Decomposition(BD-GMD) for eliminating inter user interference apply to Zero-Forcing in the Successive Signal to Leakage plus Noise Ratio(SSLNR) in Coordinated Multi-Point Coordinated Beamforming system(CoMP CB). As a result, the leakage power is eliminated. The inter user interference elimination algorithm, however, cannot guarantee the enough desired signal power therefore we perform the channel ordering to overcome this disadvantage and increase the desired signal power. The simulation results show that the proposed scheme provides the improved Bit Error Rate(BER) performance compared with existing SSLNR-Zero-Forcing-Tomlinson Harashima precoding(SSLNR-ZF-THP).

No Blind Spot: Network Coverage Enhancement Through Joint Cooperation and Frequency Reuse

  • Zhong, Yi;Qiao, Pengcheng;Zhang, Wenyi;Zheng, Fu-chun
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.773-783
    • /
    • 2016
  • Both coordinated multi-point transmission and frequency reuse are effective approaches to mitigate inter-cell interference and improve network coverage. The motivation of this work is to explore the manner to effectively utilize the spectrum resource by reasonably combining cooperation and frequency reuse. The $Mat{\acute{e}}rn$ cluster process, which is appropriate to model networks with hot spots, is used to model the spatial distribution of base stations. Two cooperative mechanisms, coherent and non-coherent joint transmission (JT), are analyzed and compared. We also evaluate the effect of multiple antennas and imperfect channel state information. The simulation reveals that the proposed approach to combine cooperation and frequency reuse is effective to improve the network coverage for users located at both the center and the boundary of the cooperative region.

Analysis of Call Admission Control for Joint Transmission-Based LTE-Advanced Systems (Joint Transmission 기반의 LTE-Advanced 시스템에 대한 호 수락 제어의 성능 분석)

  • Kim, Seung-Yeon;Lee, Hyong-Yoo;Ryu, Seung-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.535-542
    • /
    • 2013
  • Coordinated multi-point transmission (CoMP) is considered to be a promising technique to improve the throughput for LTE-Advanced systems. One important approach for CoMP is Joint Transmission (JT). However, the analytical model of JT has not been fully studied, as user equipments (UEs) receiving the desired signals from an adjacent base station (BS) as well as serving BS, or only serving BS were not distinguished. We derive a new analytical model to describe the call admission control in JT based systems. The performance measures of interest are the call blocking probability, and resource utilization. Furthermore, we compare the performance of JT-based systems and non-JT- based systems. The analytical results are in reasonable agreement with the simulation results.