• Title/Summary/Keyword: Coordinate System Transformation

Search Result 290, Processing Time 0.027 seconds

Inverse Dynamic Analysis for Various Drivings in Kinematic Systems (기구학적 시스템에 있어서 구동방법에 따른 역동역학 해석)

  • Lee, Byung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.869-876
    • /
    • 2017
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.

An Application of Coordinate Transformation Method on Lubricating Characteristics of Negative Pressure Slider

  • Hwang, Pyung;Park, Sang-Shin;Kim, Eun-Hyo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.285-286
    • /
    • 2002
  • The lubricating characteristics of negative pressure slider were performed by using divergence formulation method with the coordinate transformation method. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The pressure profile of the slider is calculated. These results are compared to that from direct numerical method. The steady-state, including minimum film thickness, pitching and rolling angle are calculated by multi-dimensional Newton-Rapson method. The stiffness and damping characteristics are also calculated.

  • PDF

Analyses of Coordinates Differences in GRS80 Map Transformation (GRS80타원체로의 지도변환과 좌표변화량 분석)

  • 이영진;차득기;김상연
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.265-272
    • /
    • 1999
  • The map coordinate systems of Korea, based on the Bessel 1841 ellipsoid with Tokyo Datum, applied in digital mapping. So, the new geocentric system have some coordinate differences compared to GRS80 ellipsoid with the International Terrestrial Reference Frame(ITRF). Therefore, map transition procedures are needed to establish for the new coordinate system. In this paper, characteristics and tendencies about coordinate differences and map tiles systems are investigated and modules for the map coordinate transformations between two systems are developed and simulated.

  • PDF

Digital Watermarking on the Color coordinate (칼라 좌표계에서의 디지털 워크마킹)

  • Lee Chang-Soon;Jung Song-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.102-108
    • /
    • 2005
  • CIELAB coordinate is represented by one lightness component and two chromaticity components and similar to human visual system. Visual devices such as computer monitor display images using RGB coordinate. We propose a technique for inserting the watermark of visually recognizable mark into the middle frequency domain of image. RGB coordinate image is transformed into CIELAB coordinate, which include the characteristics of Human vision and then a* component is transformed into DFT(Discrete Fourier transform) transform.

  • PDF

Robot Velocity Kinematics by Closed-loop Chain and ICC (폐루프 체인 및 순간 일치 좌표계를 사용한 로봇의 속도 기구학)

  • 신동헌
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.103-111
    • /
    • 2003
  • The Denavit-Hartenberg symbolic notation provides the framework for the convenient and systematic method for the robot manipulator kinematics, but is limited its use to the lower pair mechanism or to the single loop mechanisms. The Sheth-Uicker notation is its revised and generalized version to be extended fur the entire domain of the link mechanism including the higher pairs. This paper proposes the method that uses the Sheth-Uicker notation fur the robot kinematics modeling. It uses the instantly coincident coordinate system and the closed loop chain fur the coordinate transformation. It enables us to model the velocity kinematics of the robot that has the complex structures such as the ternary links and the wheels in a systematic and rational way. As an implementation of the proposed method, the Jacobian matrices were obtained for not only the robot with two legs and a torso, but a manipulator on a mobile platform.

Heterogeneous Sensor Coordinate System Calibration Technique for AR Whole Body Interaction (AR 전신 상호작용을 위한 이종 센서 간 좌표계 보정 기법)

  • Hangkee Kim;Daehwan Kim;Dongchun Lee;Kisuk Lee;Nakhoon Baek
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.315-324
    • /
    • 2023
  • A simple and accurate whole body rehabilitation interaction technology using immersive digital content is needed for elderly patients with steadily increasing age-related diseases. In this study, we introduce whole-body interaction technology using HoloLens and Kinect for this purpose. To achieve this, we propose three coordinate transformation methods: mesh feature point-based transformation, AR marker-based transformation, and body recognition-based transformation. The mesh feature point-based transformation aligns the coordinate system by designating three feature points on the spatial mesh and using a transform matrix. This method requires manual work and has lower usability, but has relatively high accuracy of 8.5mm. The AR marker-based method uses AR and QR markers recognized by HoloLens and Kinect simultaneously to achieve a compliant accuracy of 11.2mm. The body recognition-based transformation aligns the coordinate system by using the position of the head or HMD recognized by both devices and the position of both hands or controllers. This method has lower accuracy, but does not require additional tools or manual work, making it more user-friendly. Additionally, we reduced the error by more than 10% using RANSAC as a post-processing technique. These three methods can be selectively applied depending on the usability and accuracy required for the content. In this study, we validated this technology by applying it to the "Thunder Punch" and rehabilitation therapy content.

Frequency Synchronization of Three-Phase Grid-Connected Inverters Controlled as Current Supplies

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin;Yin, Jing
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1347-1356
    • /
    • 2018
  • In a three-phase system, three-phase AC signals can be translated into two-phase DC signals through a coordinate transformation. Thus, the PI regulator can realize a zero steady-state error for the DC signals. In the control of a three-phase grid-connected inverter, the phase angle of grid is normally detected by a phase-locked loop (PLL) and takes part in a coordinate transformation. A novel control strategy for a three-phase grid-connected inverter with a frequency-locked loop (FLL) based on coordinate transformation is proposed in this paper. The inverter is controlled as a current supply. The grid angle, which takes part in the coordinate transformation, is replaced by a periodic linear changing angle from $-{\pi}$ to ${\pi}$. The changing angle has the same frequency but a different phase than the grid angle. The frequency of the changing angle tracks the grid frequency by the negative feedback of the reactive power, which forms a FLL. The control strategy applies to non-ideal grids and it is a lot simpler than the control strategies with a PLL that are applied to non-ideal grids. The structure of the FLL is established. The principle and advantages of the proposed control strategy are discussed. The theoretical analysis is confirmed by experimental results.

The Study on Coordinate Transformation for Updating of Digital Map from Construction Drawing Data (건설도면 자료의 수치지도 갱신을 위한 좌표체계 부여에 관한 연구)

  • Park, Seung-Yong;Lee, Jae-Bin;Park, Woo-Jin;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.281-288
    • /
    • 2009
  • In the paper, we try to develop the methodology for updating road networks of large-scale digital maps by using construction drawing data. For the purpose, it is pre-requite step to merge road networks detached in CAD drawing data. As such, tie points are identified in neighboring drawings and used for solving the parameters of 2D conformal transformation between drawings. Then, the merged road network in CAD data is transformed to the coordinate system of digital maps. In the process, IPs in the drawings are considered as control information and 2D affine transformation is selected for coordinate transformation. Through the experiments with real dataset, we can identify that the developed method is valid and generally applicable.

A Study on the World Geodetic System Transformation Using Triangle Mesh Warping (삼각형 와핑에 의한 세계측지계 좌표변환 방법 연구)

  • Jee, Gye Hwan;Lee, Hyun Jik;Kwon, Jay Hyoun;Sim, Gyoo Seong
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2014
  • The Triangle Mesh Warping method is suggested and applied in coordinate transformation to world geodetic system in this study. The common points of Uiwang city are used to compare the transformation accuracy of the suggested methods with existing national coordinate transformation methods. As a result, the Triangle Mesh Warping method was satisfied with accuracy criteria for positioning on a map larger than scale 1/1,000 with smaller number of common points and without distortion modeling. Additionally, in case of Guri and Pyeongtaek city that established the World Geodetic System, the suggested method generates the result of transformation accuracy better than 5cm. Based on the test, it was found that the suggested method improves the problem of securing many common points and reduces the problem of mis-match between the transformed data of adjacent areas. Accordingly, for transformation of large-scale topographic map, cadastral map, GIS DB and serial cadastral map to the World Geodetic System, it is judged that the Triangle Mesh Warping would be a good method for economical efficiency and accuracy using by minimum common point.

World Geodetic System Coordinate Transformation of The New Distribution Information System (신배전정보시스템의 세계측지계 좌표변환)

  • Jang, Jung-Hwan;Kwon, Jay-Hyoun;Kim, Dong-Young;Cho, Yong-Ju
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.59-63
    • /
    • 2007
  • Each country uses its own datum which well represent its topography. The uses of the space technology such as GPS and the effort of establishing the consistent data over the world, Korea changed the survey act to use a world geodetic system from January 1, 2007. In this study, spatial analysis carried out to transform the GIS DB of electric power distribution system based on the old Tokyo datum the new world geodetic system, KGD 2002. Based on the study, problems on the transformation had been identified and efficient solutions are suggested. The data used for the 7 parameter similarity transformation in this study is the blueprints of the electric equipment and base maps. It is expected that this study provide general scheme and procedure for efficient GIS DB transformation to the new world geodetic system.

  • PDF