• Title/Summary/Keyword: Coordinate Convert

Search Result 40, Processing Time 0.026 seconds

Data Reduction Pipeline for the MIRIS Space Observation Camera

  • Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Jeong, Woong-Seob;Lee, Dae-Hee;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Park, Kwijong;Lee, Duk-Hang;Nam, Uk-won;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.74-74
    • /
    • 2013
  • Multi-purpose Infra-Red Imaging System (MIRIS) is the main payload of the Science and Technology Satellite-3 (STSAT-3) to be launched in the late half of this year. For the Space Observation Camera (SOC) of MIRIS, we developed the data reduction pipeline with Python powered by Astropy, a community Python library for astronomy. The pipeline features the following functionalities: i) to retrieve the raw observation data from database and convert it to a FITS format, ii) to mask bad pixels, iii) to correct the non-linearity, iv) to differentiate the frames, v) to correct the flat-field, vi) to correct focal-plane distortion, vii) to improve the world coordinate system (WCS) information using known point-source catalog, and viii) to combine the sequentially taken frames. The pipeline is well modularized and has flexibility for later update. In this poster, we introduce the details of the pipeline's features and the future maintenance plan.

  • PDF

Development of Monte Carlo Simulation Code for the Dose Calculation of the Stereotactic Radiosurgery (뇌 정위 방사선수술의 선량 계산을 위한 몬테카를로 시뮬레이션 코드 개발)

  • Kang, Jeongku;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.303-308
    • /
    • 2012
  • The Geant4 based Monte Carlo code for the application of stereotactic radiosurgery was developed. The probability density function and cumulative density function to determine the incident photon energy were calculated from pre-calculated energy spectrum for the linac by multiplying the weighting factors corresponding to the energy bins. The messenger class to transfer the various MLC fields generated by the planning system was used. The rotation matrix of rotateX and rotateY were used for simulating gantry and table rotation respectively. We construct accelerator world and phantom world in the main world coordinate to rotate accelerator and phantom world independently. We used dicomHandler class object to convert from the dicom binary file to the text file which contains the matrix number, pixel size, pixel's HU, bit size, padding value and high bits order. We reconstruct this class object to work fine. We also reconstruct the PrimaryGeneratorAction class to speed up the calculation time. because of the huge calculation time we discard search process of the ThitsMap and used direct access method from the first to the last element to produce the result files.

Rainfall Estimation by X-band Marine Radar (X밴드 선박용 레이더를 이용한 강우 추정)

  • Kim, Kwang-Ho;Kwon, Byung-Hyuk;Kim, Min-Seong;Kim, Park-Sa;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.695-704
    • /
    • 2018
  • The rainfall cases were identified by rainfall estimation techniques which were developed by using X - band marine radar. A digital signal converter was used to convert the signal received from the marine radar into digital reflectivity information. The ground clutter signal was removed and the errors caused by beam attenuation and beam volume changes were corrected. The reflectivity showed a linear relationship with the rain gauge rainfall. Quantitative rainfall was estimated by converting the radar signal into an cartesian coordinate system. When the rainfall was recorded more than $5mm\;hr^{-1}$ at three automatic weather stations, the rain cell distribution on the marine radar was consistent with that of the weather radar operated by Korea meteorological Adminstration.

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

A Design and Implementation of a Content_Based Image Retrieval System using Color Space and Keywords (칼라공간과 키워드를 이용한 내용기반 화상검색 시스템 설계 및 구현)

  • Kim, Cheol-Ueon;Choi, Ki-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1418-1432
    • /
    • 1997
  • Most general content_based image retrieval techniques use color and texture as retrieval indices. In color techniques, color histogram and color pair based color retrieval techniques suffer from a lack of spatial information and text. And This paper describes the design and implementation of content_based image retrieval system using color space and keywords. The preprocessor for image retrieval has used the coordinate system of the existing HSI(Hue, Saturation, Intensity) and preformed to split One image into chromatic region and achromatic region respectively, It is necessary to normalize the size of image for 200*N or N*200 and to convert true colors into 256 color. Two color histograms for background and object are used in order to decide on color selection in the color space. Spatial information is obtained using a maximum entropy discretization. It is possible to choose the class, color, shape, location and size of image by using keyword. An input color is limited by 15 kinds keyword of chromatic and achromatic colors of the Korea Industrial Standards. Image retrieval method is used as the key of retrieval properties in the similarity. The weight values of color space ${\alpha}(%)and\;keyword\;{\beta}(%)$ can be chosen by the user in inputting the query words, controlling the values according to the properties of image_contents. The result of retrieval in the test using extracted feature such as color space and keyword to the query image are lower that those of weight value. In the case of weight value, the average of te measuring parameters shows approximate Precision(0.858), Recall(0.936), RT(1), MT(0). The above results have proved higher retrieval effects than the content_based image retrieval by using color space of keywords.

  • PDF

Multi-beam Echo Sounder Operations for ROV Hemire - Exploration of Mariana Hydrothermal Vent Site and Post-Processing (심해무인잠수정 해미래를 이용한 다중빔 음향측심기의 운용 - 마리아나 열수해역 탐사 결과 및 후처리 -)

  • Park, Jin-Yeong;Shim, Hyungwon;Lee, Pan-Mook;Jun, Bong-Huan;Baek, Hyuk;Kim, Banghyun;Yoo, Seong-Yeol;Jeong, Woo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • This paper presents the operations of a multi-beam echo sounder (MBES) installed on the deep-sea remotely operated vehicle (ROV) Hemire. Hemire explored hydrothermal vents in the Forecast volcano located near the Mariana Trench in March of in 2006. During these explorations, we acquired profiling points on the routes of the vehicle using the MBES. Information on the position, depth, and attitude of the ROV are essential to obtain higher accuracy for the profiling quality. However, the MBES installed on Hemire does not have its own position and depth sensors. Although it has attitude sensors for roll, pitch, and heading, the specifications of these sensors were not clear. Therefore, we had to merge the high-performance sensor data for the motion and position obtained from Hemire into the profiling data of the MBES. Then, we could properly convert the profiling points with respect to the Earth-fixed coordinates. This paper describes the integration of the MBES with Hemire, as well as the coordinate conversion between them. Bathymetric maps near the summit of the Forecast volcano were successfully collected through these processes. A comparison between the bathymetric maps from the MBES and those from the Onnuri Research Vessel, the mother ship of the ROV Hemire for these explorations, is also presented.

Study on 3D AR of Education Robot for NURI Process (누리과정에 적용할 교육로봇의 가상환경 3D AR 연구)

  • Park, Young-Suk;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.209-212
    • /
    • 2013
  • The Nuri process of emphasis by the Ministry of Education to promote is standardized curriculum at the national level for the education and care. It is to improve the quality of pre-school education and Ensure a fair starting line early in life and It emphasizes character education in all areas of the window. Nuri the process of development of a the insect robot for the Creativity education Increased the interesting and educational effects. Assembly and the effect on learning of educational content using a VR educational robot using the existing floor assembly using the online website to help assemble and learning raised. Order to take advantage of information technology in the information-based society requires the active interest and motivation in learning, creative learning toddlers learning robot are also needed. A three-dimensional model of the robot, and augmented by linking through the marker, the target marker and the camera relative to the coordinate system of augmented reality, seeking to convert the marker to be used in augmented reality marker patterns within a pre-defined patternto be able to make a decision on what of. The fusion of a smart education through training and reinforcement the educational assembly of the robot in the real world window that is represented by a virtual environment in this paper to present a new form of state-of-the-art smart training, you will want to lay the foundation of the nation through the early national talent nurturing talent.

  • PDF

Development of Mobile System for Crop Situation Investigation using GPS based on GIS (GIS기반 GPS를 이용한 농작물 작황 조사 모바일 시스템 구축)

  • Mun, Young-Chae;Lee, Hong-Ro
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2008
  • Recently, with the develop of the location tracking technology using GPS and mobile device such as PDA and UMPC, it is used in various application fields that is coordinate transformation and compensation using GPS, is client development for Mobile GIS using GIS and is development of surface survey system for archaeological site based on mobile. In this paper, we develop the system that can investigate the growth information and production information of rice in crop of the field using mobile device, show position information of user and rice in digital map using GIS and save the investigated crop information and position information in database in server. The system which is developed in this paper consists of modules that the user management module is able to restrict database approaches in authority by of the user, the crops management module is able to save and search crop information in database in server, the map module is able to show position information of user and crops in digital map, the location information module is able to convert received location information from GPS and the communication module is able to send and receive data between GPS and mobile device and between mobile device and database. Finally, this paper shall contribute to efficient management and investigation of birth information of crop in field.

  • PDF

GPU-based dynamic point light particles rendering using 3D textures for real-time rendering (실시간 렌더링 환경에서의 3D 텍스처를 활용한 GPU 기반 동적 포인트 라이트 파티클 구현)

  • Kim, Byeong Jin;Lee, Taek Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • This study proposes a real-time rendering algorithm for lighting when each of more than 100,000 moving particles exists as a light source. Two 3D textures are used to dynamically determine the range of influence of each light, and the first 3D texture has light color and the second 3D texture has light direction information. Each frame goes through two steps. The first step is to update the particle information required for 3D texture initialization and rendering based on the Compute shader. Convert the particle position to the sampling coordinates of the 3D texture, and based on this coordinate, update the colour sum of the particle lights affecting the corresponding voxels for the first 3D texture and the sum of the directional vectors from the corresponding voxels to the particle lights for the second 3D texture. The second stage operates on a general rendering pipeline. Based on the polygon world position to be rendered first, the exact sampling coordinates of the 3D texture updated in the first step are calculated. Since the sample coordinates correspond 1:1 to the size of the 3D texture and the size of the game world, use the world coordinates of the pixel as the sampling coordinates. Lighting process is carried out based on the color of the sampled pixel and the direction vector of the light. The 3D texture corresponds 1:1 to the actual game world and assumes a minimum unit of 1m, but in areas smaller than 1m, problems such as stairs caused by resolution restrictions occur. Interpolation and super sampling are performed during texture sampling to improve these problems. Measurements of the time taken to render a frame showed that 146 ms was spent on the forward lighting pipeline, 46 ms on the defered lighting pipeline when the number of particles was 262144, and 214 ms on the forward lighting pipeline and 104 ms on the deferred lighting pipeline when the number of particle lights was 1,024766.

Development of a Retrieval Algorithm for Adjustment of Satellite-viewed Cloudiness (위성관측운량 보정을 위한 알고리즘의 개발)

  • Son, Jiyoung;Lee, Yoon-Kyoung;Choi, Yong-Sang;Ok, Jung;Kim, Hye-Sil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.415-431
    • /
    • 2019
  • The satellite-viewed cloudiness, a ratio of cloudy pixels to total pixels ($C_{sat,\;prev}$), inevitably differs from the "ground-viewed" cloudiness ($C_{grd}$) due to different viewpoints. Here we develop an algorithm to retrieve the satellite-viewed, but adjusted cloudiness to $C_{grd} (C_{sat,\;adj})$. The key process of the algorithm is to convert the cloudiness projected on the plane surface into the cloudiness on the celestial hemisphere from the observer. For this conversion, the supplementary satellite retrievals such as cloud detection and cloud top pressure are used as they provide locations of cloudy pixels and cloud base height information, respectively. The algorithm is tested for Himawari-8 level 1B data. The $C_{sat,\;adj}$ and $C_{sat,\;prev}$ are retrieved and validated with $C_{grd}$ of SYNOP station over Korea (22 stations) and China (724 stations) during only daytime for the first seven days of every month from July 2016 to June 2017. As results, the mean error of $C_{sat,\;adj}$ (0.61) is less that than that of $C_{sat,\;prev}$ (1.01). The percent of detection for 'Cloudy' scenario of $C_{sat,\;adj}$ (73%) is higher than that of $C_{sat,\;prev}$ (60%) The percent of correction, the accuracy, of $C_{sat,\;adj}$ is 61%, while that of $C_{sat,\;prev}$ is 55% for all seasons. For the December-January-February period when cloudy pixels are readily overestimated, the proportion of correction of $C_{sat,\;adj$ is 60%, while that of $C_{sat,\;prev}$ is 56%. Therefore, we conclude that the present algorithm can effectively get the satellite cloudiness near to the ground-viewed cloudiness.