• Title/Summary/Keyword: Coordinate Change

Search Result 268, Processing Time 0.023 seconds

Kinematic Calibration Method for Redundantly Actuated Parallel Mechanisms (여유구동 병렬기구의 기구학적 보정)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • To calibrate a non-redundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism's kinematic structure and measurement values. However, the calibration algorithm for a non-redundant case does not apply fur a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm fir a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

  • PDF

A Study on the Linear Decision Rule and the Search Decision Rule for Aggregate Planning (I) (총괄계획을 위한 선형결정법과 탐색결정법에 관한 연구 (I))

  • 고용해
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.6 no.8
    • /
    • pp.63-71
    • /
    • 1983
  • Aggregate planning coordinate the control variable over long-term to apply a demand variable and forcasting. In order to necessary the goal that doesn't make an inter-contradiction and explicitly defined. We made a considerable point of system approach for scheduling establishment. It include the control variables of aggregate planning : 1) employment 2) over time working and idle time 3) inventory 4) delivery delay S) subcontract 61 long - term facility capacity. Each variables composed of pure strategy as like a decision of inventory level, a change of employment level, etc. md alternative costs make a computation on the economic foundation. But the optimum alternative costs represent the mixed pure strategy. The faults of this method doesn't optimum guarantee a special scheduling as well as increasing a number of alternative combination. Theoretical, Linear Decision Rule make an including all variables, but it is almost impossible for this model to develope actually And also make use of the aggregate planning problem for developing system approach : LDR, heuristic model, Search Decision Rule, all kind of computers, simulation. But these models are very complex, each variables get an extremely inter-dependence. So this study be remained by theory level, some approach methods has not been brought the optimum solution to apply in every cases.

  • PDF

Design of a Nonlinear Observer for Mechanical Systems with Unknown Inputs (미지 입력을 가진 기계 시스템을 위한 비선형 관측기 설계)

  • Song, Bongsob;Lee, Jimin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.411-416
    • /
    • 2016
  • This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.

Stiffness Characteristics of Salt Cementation according to Depth (깊이에 따른 소금의 고결화 강성특성)

  • Eom, Yong-Hun;Byun, Yong-Hoon;Truong, Q. Hung;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.472-481
    • /
    • 2009
  • Cementation phenomenon has a huge influence on geotechnical stiffness and strength under low confining pressure. The goal of this study is to evaluate the characteristics of stiffness according to the depth. The piezo disk elements are installed at each layer of the cell for the detection of the compressional waves. The change of compressional wave velocity is classified by three stages. The compressional wave velocities are shown different according to the depth. The compressional wave velocity is especially influenced by cementation, effective stress, and coordinate number. Furthermore, the electrical conductivity and cone tip resistance are measured according to the depth. The electrical conductivity and the cone tip resistance show the similar trend with the compressional wave velocity. This study shows that the cementation by salt is affected by the depth on the granular materials.

  • PDF

Comparison and Analysis of Linear Oscillatory Actuator According to Mover Type (왕복운동 리니어 액추에이터의 가동자 형태에 따른 전자기적 특성해석 및 비교)

  • 장석명;최장영;정상섭;이성호;조한욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.213-223
    • /
    • 2004
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. The advantages of such a motor are that it has a good linearity and has no need of such mechanical energy conversion parts, which change rotary motion into linear motion, as screws, gears, chains etc In this paper, two structures of LOA are analyzed. One is the moving-coil type LOA and the other is moving-magnet type LOA. Two types of LOA are analyzed, with reference to the following parameters as variables: magnetic field, flux linkage, motor thrust and back emf. These variables are derived by the use of analytical method in terms of two-dimensional rectangular coordinate system. The maximum values of thrust according to such design parameters as air-gap length and magnet height for each model is also represented. The results are validated extensively by comparison with finite element method. In particular, we experiment moving-coil LOA which is already manufactured and confirm that the experimental results are shown in good agreement with analysis through the comparison of between analytical and experimental results

Managing Approximation Models in Multidisciplinary Optimization (다분야 최적화에서의 근사모델 관리기법의 활용)

  • 양영순;정현승;연윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.141-148
    • /
    • 2000
  • In system design, it is not always possible that all decision makers can cooperate fully and thus avoid conflict. They each control a specified subset of design variables and seek to minimize their own cost functions subject to their individual constraints. However, a system management team makes every effort to coordinate multiple disciplines and overcome such noncooperative environment. Although full cooperation is difficult to achieve, noncooperation also should be avoided as possible. Our approach is to predict the results of their cooperation and generate approximate Pareto set for their multiple objectives. The Pareto set can be obtained according to the degree of one's conceding coupling variables in the other's favor. We employ approximation concept for modelling this coordination and the mutiobjective genetic algorithm for exploring the coupling variable space for obtaining an approximate Pareto set. The approximation management concept is also used for improving the accuracy of the Pareto set. The exploration for the coupling variable space is more efficient because of its smaller dimension than the design variable space. Also, our approach doesn't force the disciplines to change their own way of running analysis and synthesis tools. Since the decision making process is not sequential, the required time can be reduced comparing to the existing multidisciplinary optimization techniques. This approach is applied to some mathematical examples and structural optimization problems.

  • PDF

Driver's Behavioral Pattern in Driver Assistance System (운전자 사용자경험기반의 인지향상 시스템 연구)

  • Jo, Doori;Shin, Donghee
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.579-586
    • /
    • 2014
  • This paper analyzes the recognition of driver's behavior in lane change using context-free grammar. In contrast to conventional pattern recognition techniques, context-free grammars are capable of describing features effectively that are not easily represented by finite symbols. Instead of coordinate data processing that should handle features in multiple concurrent events respectively, effective syntactic analysis was applied for patterning of symbolic sequence. The findings proposed the effective and intuitive method for drivers and researchers in driving safety field. Probabilistic parsing for the improving this research will be the future work to achieve a robust recognition.

Implementation of user-specific virtual coordinator apps (사용자 맞춤형 가상 코디네이터 앱 개발)

  • Kang, Dayeong;Kim, Jiyeong;Lee, Kyoung-Mi
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.821-829
    • /
    • 2017
  • In recent, there has been a great change in the shopping market due to the development of the Internet and the generalization of mobile devices. Customers have become more comfortable with online shopping where they can purchase clothes without having to visit their own shop directly. While online shopping is convenient and easy to buy, it is difficult to judge whether it is suitable for you to buy clothes. This paper proposes an application that users virtually coordinate on their own full-body photo or a user-specified model. The proposed application encourages smart purchases by enabling users to see their virtual coordination on their bodies.

Method of Deciding Elastic Modulus of Left and Right Ventricle Reconstructed by Echocardiography Using Finite Element Method and Stress Analysis

  • Han, Geun-Jo;Kim, Sang-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.217-224
    • /
    • 1994
  • In order to study the shape and dimensions of heart, a procedure to reconstruct a three dimensional left ventricular geometry from two dimensional echocardiographic images was studied including the coordinate transformation, curve fitting and interpolation utilizing three dimensional position registration arm. Nonlinear material property of the left ventricular myocardium was obtained by finite element method performed on the reconstructed geometry and by optimization techniques which compared the computer predicted 3D deformation with the experimentally determined deformation. Elastic modulus ranged from 3.5g/$cm^2$ at early diastole to l53g/$cm^2$ at around end diastole showing slightly nonlinear relationship between the modulus and the pressure. Afterwards using the obtained nonlinear material propertry the stress distribution related with oxyzen consumption rate was analyzed. The maximum and minimum of ${\sigma}_1$ (max. principal stress) occurred at nodes on the second level intersection points of x-axis with endocardium and with epicardium, respectively. And the tendency of the interventricular septum to be flattened was observed from the compressive ${\sigma}_1$ on the anterior, posterior nodes of left ventricle and from the most significant change of dimension in $D_{RL}$ (septal-lateral dimension of right ventricle).

  • PDF

State-Space Analysis on The Stability of Limit Cycle Predicted by Harmonic Balance

  • Lee, Byung-Jin;Yun, Suk-Chang;Kim, Chang-Joo;Park, Jung-Keun;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.697-705
    • /
    • 2011
  • In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.