• 제목/요약/키워드: Cooperative transmissions

검색결과 19건 처리시간 0.02초

Cooperative spectrum leasing using parallel communication of secondary users

  • Xie, Ping;Li, Lihua;Zhu, Junlong;Jin, Jin;Liu, Yijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권8호
    • /
    • pp.1770-1785
    • /
    • 2013
  • In this paper, a multi-hop transmission protocol based on parallel communication of secondary users (SUs) is proposed. The primary multi-hop network coexists with a set of SUs by cooperative spectrum sharing. The main optimization target of our protocol is the overall performance of the secondary system with the guarantee of the primary outage performance. The energy consumption of the primary system is reduced by the cooperation of SUs. The aim of the primary source is to communicate with the primary destination via a number of primary relays. SUs may serve as extra decode-and-forward relays for the primary network. When an SU acts as a relay for a primary user (PU), some other SUs that satisfy the condition for parallel communication are selected to simultaneously access the primary spectrum for secondary transmissions. For the proposed protocol, two opportunistic routing strategies are proposed, and a search algorithm to select the SUs for parallel communication is described. The throughput of the SUs and the PU is illustrated. Numerical results demonstrate that the average throughput of the SUs is greatly improved, and the end-to-end throughput of the PU is slightly increased in the proposed protocol when there are more than seven SUs.

간섭채널에서 에너지 효율적인 전송률 스케줄링을 위한 게임이론적 접근 (Game Theoretic Approach for Energy Efficient Rate Scheduling on the interference channel)

  • 오창윤
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권8호
    • /
    • pp.55-62
    • /
    • 2014
  • 게임이론을 적용하여 에너지 효율적인 전송률 스케줄링 방안을 제안한다. 먼저, 개별 단말의 효용함수를 정의하고, 효용함수를 최적화하도록 에너지를 결정하는 비협력적 전송률 게임을 모델링한다. 여기서, 효용함수는 개별 단말이 데이터 전송시 소모하는 전송 에너지이다. 특히, 개별 단말의 효용함수가 Convex 함수임을 이용하여 에너지 효율적인 전송률 스케줄링 문제가 나쉬 평형이 존재함을 증명하고, 이를 기반으로 비협력적 스케줄링 알고리즘을 제안한다. 또한, 에너지 효율의 개선을 위해서 개별 단말의 효용함수의 합을 최적화하는 협력적 스케줄링 알고리즘도 제안한다. 성능 분석을 위하여 비협력적 알고리즘과 협력적 알고리즘의 수렴도 결과와 에너지 효율성 결과를 제시한다.

Spatio-temporal protocol for power-efficient acquisition wireless sensors based SHM

  • Bogdanovic, Nikola;Ampeliotis, Dimitris;Berberidis, Kostas;Casciat, Fabio;Plata-Chaves, Jorge
    • Smart Structures and Systems
    • /
    • 제14권1호
    • /
    • pp.1-16
    • /
    • 2014
  • In this work, we address the so-called sensor reachback problem for Wireless Sensor Networks, which consists in collecting the measurements acquired by a large number of sensor nodes into a sink node which has major computational and power capabilities. Focused on applications such as Structural Health Monitoring, we propose a cooperative communication protocol that exploits the spatio-temporal correlations of the sensor measurements in order to save energy when transmitting the information to the sink node in a non-stationary environment. In addition to cooperative communications, the protocol is based on two well-studied adaptive filtering techniques, Least Mean Squares and Recursive Least Squares, which trade off computational complexity and reduction in the number of transmissions to the sink node. Finally, experiments with real acceleration measurements, obtained from the Canton Tower in China, are included to show the effectiveness of the proposed method.

Naïve Decode-and-Forward Relay Achieves Optimal DMT for Cooperative Underwater Communication

  • Shin, Won-Yong;Yi, Hyoseok
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.229-234
    • /
    • 2013
  • Diversity-multiplexing tradeoff (DMT) characterizes the fundamental relationship between the diversity gain in terms of outage probability and the multiplexing gain as the normalized rate parameter r, where the limiting transmission rate is give by rlog SNR (here, SNR denote the received signal-to-noise ratio). In this paper, we analyze the DMT and performance of an underwater network with a cooperative relay. Since over an acoustic channel, the propagation delay is commonly considerably higher than the processing delay, the existing transmission protocols need to be explained accordingly. For this underwater network, we briefly describe two well-known relay transmissions: decode-and-forward (DF) and amplify-and-forward (AF). As our main result, we then show that an instantaneous DF relay scheme achieves the same DMT curve as that of multiple-input single-output channels and thus guarantees the DMT optimality, while using an instantaneous AF relay leads at most only to the DMT for the direct transmission with no cooperation. To validate our analysis, computer simulations are performed in terms of outage probability.

PER Analysis for Cooperative Multi-Hop Transmission Protocol over Nakagami-m Fading Channels

  • Duy, Tran Trung;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • 제12권3호
    • /
    • pp.189-195
    • /
    • 2012
  • In this paper, we propose a novel protocol called a Multi-hop Diversity Transmission protocol in which the retransmission is realized by a relay that is Nearest to a current Source (MDTNS). We derive the mathematical expressions of the packet error rate (PER) and the average number of transmissions over Nakagami-m fading channels, and verify them by Monte Carlo simulations. The simulation results show that the MDTNS protocol improves the performance of the network in terms of PER when compared to the Multi-hop Diversity Transmission protocol in which the retransmission is done by a relay that is Nearest to Destination (MDTND) and to the conventional multi-hop transmission (CMT) protocol.

차량 간 통신에서 충돌을 완화하기 위한 랜덤 백오프 방안 (Random Backoff Scheme of Emergency Warning Message for Vehicle-to-Vehicle Communications)

  • 변재욱;권성오
    • 한국통신학회논문지
    • /
    • 제37권3B호
    • /
    • pp.165-173
    • /
    • 2012
  • 본 연구에서는 IEEE 802.11을 기반으로 하는 무선 차량 네트워크에서 위험 경고메시지를 효과적으로 전송하기 위한 Backoff 방안을 제안한다. 차량 간 통신인 IEEE 802.11은 위험 경고메시지를 보낼 때 다중 홉 방식을 사용하고, 다중접속방안으로 CSMA/CA를 적용하므로 차량이 밀집될수록 메시지 전송 충돌 확률이 증가한다. 따라서 위험 경고메시지 전송이 시간 지연될 가능성이 높다. 또한, 배경 트래픽이 있을 경우, 위험 경고메시지가 우선 전송이 되어야 한다. 이 같은 문제를 해결하기 위해 위험 경고메시지 전송차량과 수신차량의 위치에 따라 다른 난수발생범위를 갖는 거리 기반 백오프 방안 (DDAB: Distance-Dependent Adaptive Backoff)을 제안한다. DDAB는 배경 트래픽과 경쟁하는 영역의 차량들은 작은 난수발생범위로 설정하여 배경 트래픽보다 전송 우선순위를 높이고, 같은 위험 경고메시지 간 경쟁이 빈번한 영역의 차량들은 큰 난수발생범위를 갖도록 하여 위험 경고메시지간의 충돌을 줄인다. 실험을 통해 기존의 Backoff 방안과 비교하였으며, DDAB 방안을 적용한 경우 기존의 방안을 적용했을 때보다 성능 향상됨을 보였다.

Content Distribution for 5G Systems Based on Distributed Cloud Service Network Architecture

  • Jiang, Lirong;Feng, Gang;Qin, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4268-4290
    • /
    • 2015
  • Future mobile communications face enormous challenges as traditional voice services are replaced with increasing mobile multimedia and data services. To address the vast data traffic volume and the requirement of user Quality of Experience (QoE) in the next generation mobile networks, it is imperative to develop efficient content distribution technique, aiming at significantly reducing redundant data transmissions and improving content delivery performance. On the other hand, in recent years cloud computing as a promising new content-centric paradigm is exploited to fulfil the multimedia requirements by provisioning data and computing resources on demand. In this paper, we propose a cooperative caching framework which implements State based Content Distribution (SCD) algorithm for future mobile networks. In our proposed framework, cloud service providers deploy a plurality of cloudlets in the network forming a Distributed Cloud Service Network (DCSN), and pre-allocate content services in local cloudlets to avoid redundant content transmissions. We use content popularity and content state which is determined by content requests, editorial updates and new arrivals to formulate a content distribution optimization model. Data contents are deployed in local cloudlets according to the optimal solution to achieve the lowest average content delivery latency. We use simulation experiments to validate the effectiveness of our proposed framework. Numerical results show that the proposed framework can significantly improve content cache hit rate, reduce content delivery latency and outbound traffic volume in comparison with known existing caching strategies.

Energy-Aware Hybrid Cooperative Relaying with Asymmetric Traffic

  • Chen, Jian;Lv, Lu;Geng, Wenjin;Kuo, Yonghong
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.717-726
    • /
    • 2015
  • In this paper, we study an asymmetric two-way relaying network where two source nodes intend to exchange information with the help of multiple relay nodes. A hybrid time-division broadcast relaying scheme with joint relay selection (RS) and power allocation (PA) is proposed to realize energy-efficient transmission. Our scheme is based on the asymmetric level of the two source nodes' target signal-to-noise ratio indexes to minimize the total power consumed by the relay nodes. An optimization model with joint RS and PA is studied here to guarantee hybrid relaying transmissions. Next, with the aid of our proposed intelligent optimization algorithm, which combines a genetic algorithm and a simulated annealing algorithm, the formulated optimization model can be effectively solved. Theoretical analyses and numerical results verify that our proposed hybrid relaying scheme can substantially reduce the total power consumption of relays under a traffic asymmetric scenario; meanwhile, the proposed intelligent optimization algorithm can eventually converge to a better solution.

A New Interference-Aware Dynamic Safety Interval Protocol for Vehicular Networks

  • 유홍석;장주석;김동균
    • 한국산업정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.1-13
    • /
    • 2014
  • In IEEE 802.11p/1609-based vehicular networks, vehicles are allowed to exchange safety and control messages only within time periods, called control channel (CCH) interval, which are scheduled periodically. Currently, the length of the CCH interval is set to the fixed value (i.e. 50ms). However, the fixed-length intervals cannot be effective for dynamically changing traffic load. Hence, some protocols have been recently proposed to support variable-length CCH intervals in order to improve channel utilization. In existing protocols, the CCH interval is subdivided into safety and non-safety intervals, and the length of each interval is dynamically adjusted to accommodate the estimated traffic load. However, they do not consider the presence of hidden nodes. Consequently, messages transmitted in each interval are likely to overlap with simultaneous transmissions (i.e. interference) from hidden nodes. Particularly, life-critical safety messages which are exchanged within the safety interval can be unreliably delivered due to such interference, which deteriorates QoS of safety applications such as cooperative collision warning. In this paper, we therefore propose a new interference-aware Dynamic Safety Interval (DSI) protocol. DSI calculates the number of vehicles sharing the channel with the consideration of hidden nodes. The safety interval is derived based on the measured number of vehicles. From simulation study using the ns-2, we verified that DSI outperforms the existing protocols in terms of various metrics such as broadcast delivery ration, collision probability and safety message delay.