• Title/Summary/Keyword: Cooperative relaying (CR)

Search Result 5, Processing Time 0.02 seconds

Achieving Maximum System Throughput with Cooperative Relaying: A Case Study of IEEE 802.16j Multi-Hop Relay

  • Ryu, Hyun-Seok;Lee, Hee-Soo;Ahn, Jae-Young;Kang, Chung-Gu
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.466-474
    • /
    • 2010
  • Various types of cooperative relaying (CR) schemes exhibit different levels of throughput and outage performance because of their inherent trade-off between diversity gain and opportunity cost; in other words, the overhead that is associated with cooperation. This article attempts to answer whether cooperative communication is beneficial or not from the system-level viewpoint and furthermore, if it is, how its average throughput can be maximized while maintaining the target outage rate. In order to improve throughput at the required outage performance, we propose a unified selection criterion to deal with different levels of combining gain and opportunity cost associated with each scheme, which allows for the employment of different CR schemes for various positions of the mobile station. Our system-level simulation results for an IEEE 802.16j multi-hop relay confirm the varying levels of trade-offs among different CR schemes and furthermore, show that CR will be a useful means of maximizing the average throughput for a multi-hop relay system as long as each type of the cooperating scheme is carefully selected, depending on the position of the mobile stations.

Opportunistic Relaying Based Spectrum Leasing for Cognitive Radio Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun;Koo, In-Soo
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • Spectrum leasing for cognitive radio (CR) networks is an effective way to improve the spectrum utilization. This paper presents an opportunistic relaying based spectrum leasing for CR networks where the primary users lease their frequency band to the cognitive users. The cognitive users act as relays for the primary users to improve the channel capacity, and this improved capacity is used for the transmission of secondary users' data. We show that the cognitive users can use a significant portion of the communication resource of primary networks while maintaining a fixed target data rate for the primary users. Moreover, the primary network is also benefited by the cooperating cognitive users in terms of outage probability. Information theoretic analysis and simulation results are presented to evaluate the performances of both primary and cognitive networks.

Underlay Cooperative Cognitive Networks with Imperfect Nakagami-m Fading Channel Information and Strict Transmit Power Constraint: Interference Statistics and Outage Probability Analysis

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • This work investigates two important performance metrics of underlay cooperative cognitive radio (CR) networks: Interference cumulative distribution function of licensed users and outage probability of unlicensed users. These metrics are thoroughly analyzed in realistic operating conditions such as imperfect fading channel information and strict transmit power constraint, which satisfies interference power constraint and maximum transmit power constraint, over Nakagami-m fading channels. Novel closed-form expressions are derived and subsequently validated extensively through comparisons with respective results from computer simulations. The proposed expressions are rather long but straightforward to handle both analytically and numerically since they are expressed in terms of well known built-in functions. In addition, the offered results provide the following technical insights: i) Channel information imperfection degrades considerably the performance of both unlicensed network in terms of OP and licensed network in terms of interference levels; ii) underlay cooperative CR networks experience the outage saturation phenomenon; iii) the probability that the interference power constraint is satisfied is relatively low and depends significantly on the corresponding fading severity conditions as well as the channel estimation quality; iv) there exists a critical performance trade-off between unlicensed and licensed networks.

Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication

  • Manimekalai, Thirunavukkarasu;Joan, Sparjan Romera;Laxmikandan, Thangavelu
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.846-858
    • /
    • 2020
  • The non-orthogonal multiple access (NOMA) technique offers throughput improvement to meet the demands of the future generation of wireless communication networks. The objective of this work is to further improve the throughput by including an underlay cognitive radio network with an existing multi-carrier NOMA network, using cooperative communication. The throughput is maximized by optimal resource allocation, namely, power allocation, subcarrier assignment, relay selection, user pairing, and subcarrier pairing. Optimal power allocation to the primary and secondary users is accomplished in a way that target rate constraints of the primary users are not affected. The throughput maximization is a combinatorial optimization problem, and the computational complexity increases as the number of users and/or subcarriers in the network increases. To this end, to reduce the computational complexity, a dynamic network resource allocation algorithm is proposed for combinatorial optimization. The simulation results show that the proposed network improves the throughput.

Partial Relay Selection in Decode and Forward Cooperative Cognitive Radio Networks over Rayleigh Fading Channels

  • Zhong, Bin;Zhang, Zhongshan;Zhang, Dandan;Long, Keping;Cao, Haiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3967-3983
    • /
    • 2014
  • The performance of an partial relay selection on the decode-and-forward (DF) mode cognitive radio (CR) relay networks is studied, with some important factors, including the outage probability, the bit error ratio (BER), and the average channel capacity being analyzed. Different from the conventional relay selection schemes, the impact of spectrum sensing process as well as the spectrum utilization efficiency of primary users on the performance of DF-based CR relaying networks has been taken into consideration. In particular, the exact closed-form expressions for the figures of merit such as outage probability, BER, and average channel capacity over independent and identically distributed (i.i.d.) Rayleigh fading channels, have been derived in this paper. The validity of the proposed analysis is proven by simulation, which showed that the numerical results are consistent with the theoretical analysis in terms of the outage probability, the BER and the average channel capacity. It is also shown that the full spatial diversity order can always be obtained at the signal-to-noise ratio (SNR) range of [0dB, 15dB] in the presence of multiple potential relays.