• Title/Summary/Keyword: Cooperative protocol

Search Result 222, Processing Time 0.024 seconds

Design & analysis of transmission protocol for exploiting cooperative MIMO in broadband wireless networks (광대역 무선 네트워크의 성능 향상을 위한 분산 다중 안테나 기반 전송 프로토콜의 설계 및 분석)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.15-18
    • /
    • 2005
  • Cooperative diversity is a transmission technique, in which multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we propose a new type of cooperative transmission protocol with a full rate and show that its BER performance is improved by 8dB over the existing protocol under the AF (amplify-and-forward) mode of relaying.

  • PDF

M-1-1 Cooperative Protocol Based on OSOC-SS to Improve Bandwidth Utilization in USN

  • Kong, Hyung-Yun;Hwang, Yun-Kyeong
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.41-46
    • /
    • 2008
  • A bandwidth and power efficient high speed ubiquitous sensor network(USN) for realizing a ubiquitous society is a great challenge for researcher community. In this paper we incorporate a cooperative transmission protocol within a special type of multi-code modulation to meet these requirements. Multi-code(Mc) modulation has been developed for high-speed data transmission over wireless channels. We proposed a new class of orthogonal codes for multi-code modulation which is an orthogonal subset of orthogonal codes(OSOC). Our proposed OSOC structure allows us to use only one relay to cooperate M nodes that effectively reduces the bandwidth and power requirement. This protocol is similar to spread-spectrum(SS) technique that can reduce both broad and narrow band jamming.

Cooperative Incumbent System Protection MAC Protocol for Multi-channel Ad-hoc Cognitive Radio Networks

  • Yi, Ke;Hao, Nan;Yoo, Sang-Jo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1976-1996
    • /
    • 2011
  • Cognitive radio (CR) MAC protocol provides access control of unused spectrum resources without causing interference to primary users. To achieve this goal, in this paper a TDMA based cooperative multi-channel cognitive radio MAC (MCR-MAC) protocol is proposed for wireless ad hoc networks to provide reliable protection for primary users by achieving cooperative detection of incumbent system signals around the communication pair. Each CR node maintains transmission opportunity schedules and a list of available channels that is employed in the neighbor discovery period. To avoid possible signal collision between incumbent systems and cognitive radio ad hoc users, we propose a simple but efficient emergency notification message exchanging mechanism between neighbor CR nodes with little overhead. Our simulation results show that the proposed MCR-MAC can greatly reduce interference with primary users and remarkably improve the network throughput.

Performance of Relaying Protocols in 60 GHz Wireless Networks (60GHz 채널 환경에서의 릴레이를 이용한 중계 시스템 연구)

  • Lee, Yong-Wook;Kang, Dong-Hoon;Park, Hyo-Bae;Oh, Wang-Rok
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.3-5
    • /
    • 2009
  • In this paper, we exploit the cooperative diversity relay protocol to compensate for defects of wireless communication in 60 GHz. We derive and proof results of the numerical expressions versus various scenarios using the computer simulations. Optimal location and scaling factor of relay are presented through analysis of performances and compared between direct-path and time diversity transmission. Consequently, our results confirm that cooperative diversity relay protocol is an effective mean of enhancing the performance of wireless communication systems in 60 GHz.

  • PDF

Optimal Relays for Cooperative ARQ Protocol Based on Threshold of Distance

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.215-223
    • /
    • 2008
  • Retransmission signals from relays to destination when the destination fails to decode received signal from the source in Automatic Repeat Request (ARQ) protocol make the destination receive signals more reliably. With using omni -direction antenna in the practical system, in communication range of both the source antenna and the destination antenna, there are some relays that can be used to transmit signal to the destination. However, using all relays to transmit signal consume power and bandwidth. In this paper, we propose a new protocol in which the best relays are chosen based on threshold of distance from the source to the relay and the relay to the destination when the relays use decode- and forward (DF) protocol. Simulation results prove the efficiency of the protocol when we compare using only the best relays with using all relays to transmit signal to the destination.

An Entropy-based Cooperative-Aided Routing Protocol for Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크를 위한 엔트로피기반 협력도움 라우팅 프로토콜)

  • An, Beong-Ku;Lee, Joo-Sang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.106-113
    • /
    • 2008
  • In this paper, we propose an Entropy-based Cooperative-Aided Routing Protocol (ECARP) in Mobile Ad-hoc fireless Sensor Networks (MAWSN). The main contributions and features of this paper are as follows. First, the entropy-based cooperative routing protocol which is based on node mobility is proposed for supporting stable routing route construction. Second, cooperative data transmission method is used for improving data transmission ratio with the improved SNR. Third, we consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed routing protocol is performed via simulation and analysis.

Performance of Cooperative Networks with Mixed Relaying Protocols in Railway Environments (철도환경에서 혼합 중계 프로토콜을 이용한 협력 네트워크의 성능)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.271-276
    • /
    • 2016
  • Cooperative networks enhance the overall communication performance by combining signals from relay nodes and direct signal. In this paper, we analyze the performance of cooperative communication systems which use mixed relaying protocols. By assuming several relay nodes exist between the source node and destination node, we consider the systems use not a single relaying protocol but both decode-and-forward and amplify-and-forward protocols randomly. We analyze the effect of each relying protocol for the overall system performance, and also consider the performance depending on the relay location. Differential modulation scheme which demodulates signal without channel state information is adopted where it can be applicable fast varying channel such as railway environments.

Energy Efficiency of Cooperative Routing with EGC Over Rayleigh Fading Channel (레일리 페이딩 채널을 통해 결합된 등가 이득 협력 라우팅의 에너지 효율)

  • Kong, Hyung-Yun;Tran, Truc Thanh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.65-70
    • /
    • 2013
  • In this paper, we propose a multi-hop cooperative transmission protocol to obtain energy savings in static wireless networks. Each terminal in the network is equipped with a single antenna and each receiver uses equal gain combining technique (EGC) to combine received signals. We also propose a power allocation strategy which optimizes the total transmit power at each stage. Monte-Carlo simulations are presented to evaluate and compare performance of the proposed protocol with the multi-hop direct transmission (MDT) and the cooperative routing protocol proposed by Khadani [8], in terms of the average total transmit power and the average number of required stages.

Reliable Multicast MAC Protocol for Cooperative Autonomous Vehicles (협력적 자율 차량을 위한 신뢰성있는 멀티케스트 MAC 프로토콜)

  • Kim, Jungsook;Kim, Juwan;Choi, Jeongdan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.180-187
    • /
    • 2014
  • This paper introduces reliable multicast MAC protocol for cooperative unmanned vehicles. cooperative unmanned vehicles communicate with infrastructure and other unmanned vehicles in order to increase driving safety. They exchange information related to driving and thus it requires real-time and reliable multicast. However, the international vehicular communication standard, IEEE 802.11p WAVE, does not provide a reliable multicast scheme on the MAC layer. To address the problems of reliability, we propose a reliable multicast protocol called WiVCL, which avoids contention and collision. Our evaluation shows that the WiVCL achieves a high degree of reliability and real-time features.

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.