• Title/Summary/Keyword: Cooperative diversity relay

Search Result 116, Processing Time 0.023 seconds

Optimal Power Allocation and Relay Selection for Cognitive Relay Networks using Non-orthogonal Cooperative Protocol

  • Lan, Peng;Chen, Lizhen;Zhang, Guowei;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2047-2066
    • /
    • 2016
  • In this paper, we investigate joint power allocation and relay selection (PARS) schemes in non-orthogonal cooperative protocol (NOCP) based cognitive relay networks. Generally, NOCP outperforms the orthogonal cooperative protocol (OCP), since it can provide more transmit diversity. However, most existing PARS schemes in cognitive relay networks focus on OCP, which are not suitable for NOCP. In the context of NOCP, we first derive the joint constraints of transmit power limit for secondary user (SU) and interference constraint for primary user (PU). Then we formulate optimization problems under the aforementioned constraints to maximize the capacity of SU in amplify-and-forward (AF) and decode-and-forward (DF) modes, respectively. Correspondingly, we derive the closed form solutions with respect to different parameters. Numerical results are provided to verify the performance improvement of the proposed PARS schemes.

An Efficient Receive Diversity Combining Technique for SC-FDMA-based Cooperative Relays (SC-FDMA 기반 상호협력 릴레이를 위한 효율적인 수신 다이버시티 결합 기법)

  • Woo, Kyung-Soo;Kim, Yeong-Jun;Yoo, Hyun-Il;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.307-314
    • /
    • 2010
  • In this paper, a receive diversity combining technique is proposed for single-carrier frequency division multiple access (SC-FDMA)-based cooperative relay systems when discrete Fourier transform (DFT) spreading sizes for mobile station (MS) and relay station (RS) are different. The proposed technique is composed of a DFT spreading size adjustment block, a phase rotation compensation block, a channel phase compensation block, and a receive diversity combining block. The proposed technique is robust to multipath channels and can be operated with a relatively small computational complexity because receive diversity combining is performed with scalar operations in the frequency-domain. It is shown by computer simulation that the proposed receive diversity combining techniques achieve a performance gain over the conventional maximal ratio combining (MRC) techniques for SC-FDMA-based cooperative relay systems.

Incremental Best Relay Selection System with Outdated CSI in Rayleigh Fading Channels (레일레이 페이딩 채널에서 CSI 지연을 갖는 증가 최적 릴레이 선택 시스템)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.17-23
    • /
    • 2012
  • Recently, for spectral efficiency and power saving, an incremental best relay selection of a cooperative diversity scheme is proposed. However during the best relay selection process, there may exist a delay between channel estimation and actual data transmission. Consequently, this delay causes outdated channel state information (CSI). We analytically derive the effect of the outdated CSI to an incremental best relay selection diversity scheme. It is noted that the system performance deteriorates with decreasing the value of the correlation coefficient sensitively. When the correlation coefficient reduces from 1 to 0.9, the most performance degradation is denoted. However, the performance degradation is diminished with decreasing the correlation coefficient.

Diversity-Multiplexing Tradeoff Analysis for Half-Duplex Dynamic Decode-and-Forward Relay Protocol Using Multiple Antennas at a Single Node (단일 노드에서 다중 안테나를 사용하는 HD DDF Relay 프로토콜에 대한 DMT 분석)

  • Yim, Changho;Kim, Taeyoung;Yoon, Eunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.426-435
    • /
    • 2013
  • The diversity-multiplexing tradeoff (DMT) functions of three special half-duplex (HD) dynamic decode-and-forward (DDF) protocols with multiple antennas only at the source node, only at the destination node, and only at the relay node are analytically derived. The DMT functions of these three relay protocols are compared with one another and with those of the nonorthogonal amplify and forward (NAF) protocols.

Performance Analysis of 1-2-1 Cooperative Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 1-2-1 협력 프로토콜에 관한 연구)

  • Choi, Dae-Kyu;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.113-119
    • /
    • 2008
  • Conventional 1-1-1 cooperative protocol offers path-loss gain as advantage of multi-hop and spatial diversity which is equivalent to MIMO system. This protocol is enable to get higher reliability and reduction of power consumption than those of the single-hop or multi-hop. But the 1-1-1 cooperative protocol get only the diversity order 2 and limited path-loss reduction gain because this protocol has a single cooperative relay. We propose 1-2-1 cooperative protocol using two cooperative relays R1, R2. The 1-2-1 cooperative protocol can improve path-loss reduction and increase diversity order 3. Moreover, the cooperative relay R2 attains diversity order 2. The signaling method in transmission uses DF (Decode and Forward) or DR (Decode and Reencode) and 1-2-1 DF/DR cooperative protocol are applied to clustering based wireless sensor networks (WSNs). Simulations are performed to evaluate the performance of the protocols under Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

  • PDF

Security Performance Analysis of DF Cooperative Relay Networks over Nakagami-m Fading Channels

  • Zhang, Huan;Lei, Hongjiang;Ansari, Imran Shafique;Pan, Gaofeng;Qaraqe, Khalid A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2416-2432
    • /
    • 2017
  • In this paper, we investigate the security performance for cooperative networks over Nakagami-m fading channels. Based on whether the channel state information (CSI) of wiretap link is available or not, optimal relay selection (ORS) and suboptimal relay selection (SRS) schemes are considered. Also, multiple relays combining (MRC) scheme is considered for comparison purpose. The exact and asymptotic closed-form expressions for secrecy outage probability (SOP) are derived and simulations are presented to validate the accuracy of our proposed analytical results. The numerical results illustrate that the ORS is the best scheme and SRS scheme is better than MRC scheme in some special scenarios such as when the destination is far away from the relays. Furthermore, through asymptotic analysis, we obtain the closed-form expressions for the secrecy diversity order and secrecy array gain for the three different selection schemes. The secrecy diversity order is closely related to the number of relays and fading parameter between relay and destination.

Performance Analysis of Physical Layer Security using Partial Relay Selection in Cooperative Communication based on Decode-and-Forward with Multi-Relay (다수의 중계기가 존재하는 복호 후 재전송 기반 협력 통신 시스템에서 부분적인 중계기 선택을 사용하는 물리 계층 보안의 성능 분석)

  • Park, Sol;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • In this paper, we investigate the secrecy outage probability when using a partial relay selection scheme in cooperative communication systems based on decode-and-forward with multi-relay. It is assumed that both the receiving node and the eavesdropping node receive signals at both the transmitting node and the relaying node. The two received signals are used to obtain the diversity gain using the MRC scheme. In this paper, we compute the theoretical formula of secrecy outage probability and compare the theoretical value with the simulation value to prove that equation is valid. The simulation results show how the secrecy outage probability varies with the number of relays.

A Cooperative ARQ strategy in Ad hoc Cognitive Relays for Mobile Multimedia Communication (이동 멀티미디어 통신을 위한 Ad-hoc Cognitive Relay의 Cooperative ARQ 재전송 기법)

  • An, Mi-Eun;Kang, Hae-Lynn;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.28-35
    • /
    • 2011
  • Cooperative ARQ scheme is effective for better QoS guarantee for the next generation mobile communication systems where multimedia data transmission highly increases. In this paper, we propose a cooperative ARQ strategy in ad hoc cognitive relays for mobile multimedia communication for supporting instantaneous cooperation in MANET environment. In the proposed strategy, to support real time, delay-sensitive services, whenever a frame is transmitted from the source, each relay actively senses the SINR of the signal transmitted from the source, and determine whether to propose retransmission or not before the destination transmits feedback signal. To minimize the false retransmission decision or needless retransmission, we propose an adaptive sensing threshold optimization algorithm to maintain suboptimal sensing thresholds for each relay. By computer simulation, it is shown that the proposed cooperative ARQ retransmission scheme outperforms the conventional schemes with respect to frame transmission delay and frame loss probability in real time multimedia data transmission system.

Adaptive Cooperative Relay Transmission Technique Using Closed-loop MIMO Scheme for Duplex Communication System (양방향 통신 시스템에서 폐회로 다중 안테나 기법을 적용한 적응형 협동 중계 전송 기술)

  • Lee, Kwan-Seob;Kim, Young-Ju
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • In this paper, We propose that the adaptive cooperative relay transmission technique using closed-loop MIMO scheme for duplex communication system. As the mobility between relay and base station is little, closed-loop MIMO is better diversity gain than open-loop MIMO. At this time, more than one relaying terminals are included in one cooperative group to share their transmission and take precoding weight feedback. For minimization of throughput reduction caused by increasing feedback bits, we use codebook-based MRT that limit the number of feedback bits. Among the cooperative relay group, the best relays are selected from the base stataion and get the feedback. A protocol senarios are also proposed for this relay system.

Naïve Decode-and-Forward Relay Achieves Optimal DMT for Cooperative Underwater Communication

  • Shin, Won-Yong;Yi, Hyoseok
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Diversity-multiplexing tradeoff (DMT) characterizes the fundamental relationship between the diversity gain in terms of outage probability and the multiplexing gain as the normalized rate parameter r, where the limiting transmission rate is give by rlog SNR (here, SNR denote the received signal-to-noise ratio). In this paper, we analyze the DMT and performance of an underwater network with a cooperative relay. Since over an acoustic channel, the propagation delay is commonly considerably higher than the processing delay, the existing transmission protocols need to be explained accordingly. For this underwater network, we briefly describe two well-known relay transmissions: decode-and-forward (DF) and amplify-and-forward (AF). As our main result, we then show that an instantaneous DF relay scheme achieves the same DMT curve as that of multiple-input single-output channels and thus guarantees the DMT optimality, while using an instantaneous AF relay leads at most only to the DMT for the direct transmission with no cooperation. To validate our analysis, computer simulations are performed in terms of outage probability.