• 제목/요약/키워드: Cooperative control system

검색결과 335건 처리시간 0.028초

A research on man-robot cooperative interaction system

  • Ishii, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.555-557
    • /
    • 1992
  • Recently, realization of an intelligent cooperative interaction system between a man and robot systems is required. In this paper, HyperCard with a voice control is used for above system because of its easy handling and excellent human interfaces. Clicking buttons in the HyperCard by a mouse device or a voice command means controlling each joint of a robot system. Robot teaching operation of grasping a bin and pouring liquid in it into a cup is carried out. This robot teaching method using HyperCard provides a foundation for realizing a user friendly cooperative interaction system.

  • PDF

Cooperative Guidance Law for Multiple Near Space Interceptors with Impact Time Control

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.281-292
    • /
    • 2014
  • We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode (NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.

강화 학습에 의한 소형 자율 이동 로봇의 협동 알고리즘 구현 (A reinforcement learning-based method for the cooperative control of mobile robots)

  • 김재희;조재승;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.648-651
    • /
    • 1997
  • This paper proposes methods for the cooperative control of multiple mobile robots and constructs a robotic soccer system in which the cooperation will be implemented as a pass play of two robots. To play a soccer game, elementary actions such as shooting and moving have been designed, and Q-learning, which is one of the popular methods for reinforcement learning, is used to determine what actions to take. Through simulation, learning is successful in case of deliberate initial arrangements of ball and robots, thereby cooperative work can be accomplished.

  • PDF

유전 프로그래밍에 의한 자율이동로봇군의 협조행동 및 제어 (Cooperative behavior and control of autonomous mobile robots using genetic programming)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1177-1180
    • /
    • 1996
  • In this paper, we propose an algorithm that realizes cooperative behavior by construction of autonomous mobile robot system. Each robot is able to sense other robots and obstacles, and it has the rule of behavior to achieve the goal of the system. In this paper, to improve performance of the whole system, we use Genetic Programming based on Natural Selection. Genetic Programming's chromosome is a program of tree structure and it's major operators are crossover and mutation. We verify the effectiveness of the proposed scheme from the several examples.

  • PDF

BOXES-based Cooperative Fuzzy Control for Cartpole System

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.22-29
    • /
    • 2007
  • Two fuzzy controllers defined by 2 input variables cooperate to control a cartpole system in terms of balancing as well as centering. The cooperation is due to the BOXES scheme that selects one of the fuzzy controllers for each time step according to the content of box that is established through the critic of the control action by the fuzzy controllers. It is found that the control scheme is good at controlling the cartpole system so that the system is stabilized fast while the BOXES develops its ability to select proper fuzzy controller through experience.

통신시스템을 이용한 자율이동로봇군의 협조행동 및 제어 (Cooperative Behavior and Control in a Collective Autonomous Mobile Robots using Communication System)

  • 이동욱;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.323-326
    • /
    • 1996
  • In this paper, we propose a new method of the communication system for cooperative behavior and control in a collective autonomous mobile robots. A communication function among the collective robots is essential to intelligent cooperation. In general, global communication is effective for small number of robots. However when the number of robot goes on increasing, this becomes difficult to be realized because of limited communication capacity and increasing amount of information to handle. And also the problems such as communication interference and improper message transmission occur. So we propose local communication system based on infrared sensor to realize the cooperative behavior and control as the solution of above problem. It is possible to prevent overflow of information and exchange of complex information by combining communicate a specific robot. At last we verify the effectiveness of the proposed communication system from example of cooperative behavior.

  • PDF

Consensus of Leader-Follower Multi-Vehicle System

  • Zhao, Enjiao;Chao, Tao;Wang, Songyan;Yang, Ming
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.522-534
    • /
    • 2017
  • According to the characteristics of salvo attack for the multiple flight vehicles (MFV), the design of cooperative guidance law can be converted into the consensus problem of multi-vehicle system through the concept of multi-agent cooperative control. The flight vehicles can be divided into leader and followers depending on different functions, and the flight conditions of leader are independent of the ones of followers. The consensus problem of leader-follower multi-vehicle system is researched by graph theory, and the consensus protocol is also presented. Meanwhile, the finite time guidance law is designed for the flight vehicles via the finite time control method, and the system stability is also analyzed. Whereby, the guidance law can guarantee the line of sight (LOS) angular rates converge to zero in finite time, and hence the cooperative attack of the MFV can be realized. The effectiveness of the designed cooperative guidance method is validated through the simulation with a stationary target and a moving target, respectively.

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

Cooperative Contour Control of Two Robots under Speed and Joint Acceleration Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru;Kyura, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1387-1391
    • /
    • 2003
  • The fundamental aim of this paper is to present a solution algorithm to achieve cooperative contour controlling, under joint acceleration constraint with maximum cooperative speed. Usually, the specifications like maximum velocity of cooperative trajectory are determined by the application itself. In resolving the cooperative trajectory into two complementary trajectories, an optimum task resolving strategy is employed so that the task assignment for each robot is fair under the joint acceleration constraint. The proposed algorithm of being an off-line technique, this could be effectively and conveniently extended to the existing servo control systems irrespective of the computational power of the controller implemented. Further, neither a change in hardware setup nor considerable reconfiguration of the existing system is required in adopting this technique. A simulation study has been carried out to verify that the proposed method can be realized in the generation of complementary trajectories so that they could meet the stipulated constraints in simultaneous maneuvering.

  • PDF

시스템 확장에 의한 수동성 제어에 기초한 다중 이동로봇 시스템의 모델링 및 안정성 해석 (Modeling and Stability Analysis for Multiple Mobile Robot System by Passivity-based Control via Augmented System)

  • 서진호;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2411-2413
    • /
    • 2004
  • In this paer, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative mobile robots. The considered system convey a common rigid object in a horizontal plain. The effectiveness of proposed control algorithm is examined by numerical simulation for cooperative tasks.

  • PDF