• Title/Summary/Keyword: Cooperative Video Surveillance

Search Result 4, Processing Time 0.028 seconds

An Efficient Neighbor Discovery Method for Cooperative Video Surveillance Services in Internet of Vehicles (차량 인터넷에서 협업 비디오 감시 서비스를 위한 효율적인 이웃 발견 방법)

  • Park, Taekeun;Lee, Suk-Kyoon
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.97-109
    • /
    • 2016
  • The rapid deployment of millions of mobile sensors and smart devices has resulted in high demand for opportunistic encounter-based networking. For the cooperative video surveillance of dashboard cameras in nearby vehicles, a fast and energy-efficient asynchronous neighbor discovery protocol is indispensable because a dashboard camera is an energy-hungry device after the vehicle's engine has turned off. In the existing asynchronous neighbor discovery protocols, all nodes always try to discover all neighbors. However, a dashboard camera needs to discover nearby dashboard cameras when an event is detected. In this paper, we propose a fast and energy-efficient asynchronous neighbor discovery protocol, which enables nodes : 1) to have different roles in neighbor discovery, 2) to discover neighbors within a search range, and 3) to report promptly the exact discovery result. The proposed protocol has two modes: periodic wake-up mode and active discovery mode. A node begins with the periodic wake-up mode to be discovered by other nodes, switches to the active discovery mode on receiving a neighbor discovery request, and returns to the periodic wake-up mode when the active discovery mode finishes. In the periodic wake-up mode, a node wakes up at multiples of number ${\alpha}$, where ${\alpha}$ is determined by the node's remaining battery power. In the active discovery mode, a node wakes up for consecutive ${\gamma}$ slots. Then, the node operating in the active discovery mode can discover all neighbors waking up at multiples of ${\beta}$ for ${\beta}{\leq}{\gamma}$ within ${\gamma}$ time slots. Since the proposed protocol assigns one half of the duty cycle to each mode, it consumes equal to or less energy than the existing protocols. A performance comparison shows that the proposed protocol outperforms the existing protocols in terms of discovery latency and energy consumption, where the frequency of neighbor discovery requests by car accidents is not constantly high.

A Study on Swarm Robot-Based Invader-Enclosing Technique on Multiple Distributed Object Environments

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.806-816
    • /
    • 2011
  • Interest about social security has recently increased in favor of safety for infrastructure. In addition, advances in computer vision and pattern recognition research are leading to video-based surveillance systems with improved scene analysis capabilities. However, such video surveillance systems, which are controlled by human operators, cannot actively cope with dynamic and anomalous events, such as having an invader in the corporate, commercial, or public sectors. For this reason, intelligent surveillance systems are increasingly needed to provide active social security services. In this study, we propose a core technique for intelligent surveillance system that is based on swarm robot technology. We present techniques for invader enclosing using swarm robots based on multiple distributed object environment. The proposed methods are composed of three main stages: location estimation of the object, specified object tracking, and decision of the cooperative behavior of the swarm robots. By using particle filter, object tracking and location estimation procedures are performed and a specified enclosing point for the swarm robots is located on the interactive positions in their coordinate system. Furthermore, the cooperative behaviors of the swarm robots are determined via the result of path navigation based on the combination of potential field and wall-following methods. The results of each stage are combined into the swarm robot-based invader-enclosing technique on multiple distributed object environments. Finally, several simulation results are provided to further discuss and verify the accuracy and effectiveness of the proposed techniques.

Secure Camera Network System for Intelligent Surveillance Systems Based on Real-Time Video (실시간 영상 기반의 지능형 보안 관제 시스템을 위한 안전한 카메라 네트워크 시스템)

  • Yang, Soo-mi;Ko, Eun-kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1102-1106
    • /
    • 2015
  • To provide social security and for cooperative smart camera context awareness processing, each camera stores and exchange context data. For a specific event, measured values with other context data is stored RDB. RDB is transformed to ontology RDF file and is used for context reasoning. Interoperability between smart cameras conforms to ONVIF and constitutes intelligent surveillance system. To guarantee the confidentiality and integrity, securiy techniques are adopted. Security overhead between agents is analyzed in the prototype system implemented.

The Development Trend of a VTOL MAV with a Ducted Propellant (덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향)

  • Kim, JinWan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This purpose of this paper was to review the development trend of the VTOL MAVs with a ducted propellant that can fly like the VTOL at intermediate and high speeds, hovering, landing, and lifting off vertically over urban areas, warships, bridges, and mountainous terrains. The MAV differs in flight characteristics from helicopters and fixed wings in many respects. In addition to enhancing thrust, the duct protects personnel from accidental contact with the spinning rotor. The purpose of the U.S. Army FCS and DARPA's OAV program is spurring development of a the VTOL ducted MAV. Today's MAVs are equipped with video/infrared cameras to hover-and-stare at enemies hidden behind forests and hills for approximately one hour surveillance and reconnaissance. Class-I is a VTOL ducted MAV developed in size and weight that individual soldiers can store in their backpacks. Class-II is the development of an organic VTOL ducted fan MAV with twice the operating time and a wider range of flight than Class-I. MAVs will need to develop to perch-and-stare technology for lengthy operation on the current hover-and-stare. The near future OAV's concept is to expand its mission capability and efficiency with a joint operation that automatically lifts-off, lands, refuels, and recharges on the vehicle's landing pad while the manned-unmanned ground vehicle is in operation. A ducted MAV needs the development of highly accurate relative position technology using low cost and small GPS for automatic lift-off and landing on the landing pad. There is also a need to develop a common command and control architecture that enables the cooperative operation of organisms between a VTOL ducted MAV and a manned-unmanned ground vehicle.