• Title/Summary/Keyword: Cooperative Networks

Search Result 533, Processing Time 0.02 seconds

Opportunistic Reporting-based Sensing-Reporting-Throughput Optimization Scheme for Cooperative Cognitive Radio Networks

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1319-1335
    • /
    • 2017
  • This paper proposes an opportunistic reporting-based sensing-reporting-throughput optimization scheme that maximizes the spectral efficiency of secondary users (SUs) in cooperative cognitive radio networks with a soft combining rule. The performance of cooperative spectrum sensing depends on the sensing time, the reporting time of transmitting sensing results, and the fusion scheme. While longer sensing time and reporting time improve the sensing performance, this shortens the allowable data transmission time, which in turn degrades the spectral efficiency of SUs. The proposed scheme adopts an opportunistic reporting scheme to restrain the reporting overhead and it jointly controls the sensing-reporting overhead in order to increase the spectral efficiency of SUs. We show that there is a trade-off between the spectral efficiency of SUs and the overheads of cooperative spectrum sensing. The numerical results demonstrate that the proposed scheme significantly outperforms the conventional sensing-throughput optimization schemes when there are many SUs. Moreover, the numerical results show that the sensing-reporting time should be jointly optimized in order to maximize the spectral efficiency of SUs.

Design and evaluation of a fuzzy cooperative caching scheme for MANETs

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.605-619
    • /
    • 2010
  • Caching of frequently accessed data in multi-hop ad hoc environment is a technique that can improve data access performance and availability. Cooperative caching, which allows sharing and coordination of cached data among several clients, can further en-hance the potential of caching techniques. In this paper, we propose a fuzzy cooperative caching scheme in mobile ad hoc networks. The cache management of the proposed caching scheme not only uses adaptively CacheData or CachePath based on data sim-ilarity and data utility, but also uses the replacement manager based on data pro t. Also, the proposed caching scheme uses a prefetch manager. When the TTL of the cached data expires, the prefetch manager evaluates the popularity index of the data. If the popularity index is larger than a threshold, the data is prefetched. Otherwise, its space is released. The performance of the proposed scheme is evaluated analytically and is compared to that of other cooperative caching schemes.

Error Probability Evaluation of a Novel Cooperative Communications Signaling Strategy in CDMA Systems

  • Khuong Ho-Van;Kong Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.257-266
    • /
    • 2006
  • The powerful benefits of multi-antenna systems can be obtained by cooperative communications among users in multiple access environments without the need for physical arrays. This paper studies a novel cooperative signaling strategy that achieves high performance and low implementation complexity for synchronous code division multiple access (CDMA) wireless mobile networks. The validity of the proposed strategy under slow flat Rayleigh fading channel plus additive white Gaussian noise (AWGN) is verified through closed-form error probability expressions and MonteCarlo simulations. A variety of analytical results reveal that the new cooperative strategy significantly outperforms direct transmission subject to the same spectral efficiency and transmit power constraint.

A Study on Cluster Lifetime in Multi-HopWireless Sensor Networks with Cooperative MISO Scheme

  • Huang, Zheng;Okada, Hiraku;Kobayashi, Kentaro;Katayama, Masaaki
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.443-450
    • /
    • 2012
  • As for cluster-based wireless sensor networks (WSNs), cluster lifetime is one of the most important subjects in recent researches. Besides reducing the energy consumptions of the clusters, it is necessary to make the clusters achieve equal lifetimes so that the whole network can survive longer. In this paper, we focus on the cluster lifetimes in multi-hop WSNs with cooperative multi-input single-output scheme. With a simplified model of multi-hop WSNs, we change the transmission schemes, the sizes and transmission distances of clusters to investigate their effects on the cluster lifetimes. Furthermore, linear and uniform data aggregations are considered in our model. As a result, we analyze the cluster lifetimes in different situations and discuss the requirements on the sizes and transmission distances of clusters for equal lifetimes.

SINR Pricing in Non Cooperative Power Control Game for Wireless Ad Hoc Networks

  • Suman, Sanjay Kumar;Kumar, Dhananjay;Bhagyalakshmi, L.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2281-2301
    • /
    • 2014
  • In wireless ad hoc networks the nodes focus on achieving the maximum SINR for efficient data transmission. In order to achieve maximum SINR the nodes culminate in exhausting the battery power for successful transmissions. This in turn affects the successful transmission of the other nodes as the maximum transmission power opted by each node serves as a source of interference for the other nodes in the network. This paper models the choice of power for each node as a non cooperative game where the throughput of the network with respect to the consumption of power is formulated as a utility function. We propose an adaptive pricing scheme that encourages the nodes to use minimum transmission power to achieve target SINR at the Nash equilibrium and improve their net utility in multiuser scenario.

Synergy: An Overlay Internetworking Architecture and Implementation

  • Kwon, Min-Seok;Fahmy, Sonia
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.181-190
    • /
    • 2010
  • A multitude of overlay network designs for resilient routing, multicasting, quality of service, content distribution, storage, and object location have been proposed. Overlay networks offer several attractive features, including ease of deployment, flexibility, adaptivity, and an infrastructure for collaboration among hosts. In this paper, we explore cooperation among co-existing, possibly heterogeneous, overlay networks. We discuss a spectrum of cooperative forwarding and information sharing services, and investigate the associated scalability, heterogeneity, and security problems. Motivated by these services, we design Synergy, a utility-based overlay internetworking architecture that fosters overlay cooperation. Our architecture promotes fair peering relationships to achieve synergism. Results from Internet experiments with cooperative forwarding overlays indicate that our Synergy prototype improves delay, throughput, and loss performance, while maintaining the autonomy and heterogeneity of individual overlay networks.

Cooperative Beamformer Design for Improving Physical Layer Security in Multi-Hop Decode-and-Forward Relay Networks

  • Lee, Han-Byul;Lee, Jong-Ho;Kim, Seong-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.187-199
    • /
    • 2016
  • In this paper, we consider secure communications in multi-hop relaying systems, where multiple decode-and-forward (DF) relays are located at each individual hop and perform cooperative beamforming to improve physical layer security. In order to determine the cooperative relay beamformer at each hop, we propose an iterative beamformer update scheme using semidefinite relaxation and bisection techniques. Numerical results are presented to verify the secrecy rate performance of the proposed scheme.

Soft Combination Schemes for Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Shen, Bin;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • This paper investigates linear soft combination schemes for cooperative spectrum sensing in cognitive radio networks. We propose two weight-setting strategies under different basic optimality criteria to improve the overall sensing performance in the network. The corresponding optimal weights are derived, which are determined by the noise power levels and the received primary user signal energies of multiple cooperative secondary users in the network. However, to obtain the instantaneous measurement of these noise power levels and primary user signal energies with high accuracy is extremely challenging. It can even be infeasible in practical implementations under a low signal-to-noise ratio regime. We therefore propose reference data matrices to scavenge the indispensable information of primary user signal energies and noise power levels for setting the proposed combining weights adaptively by keeping records of the most recent spectrum observations. Analyses and simulation results demonstrate that the proposed linear soft combination schemes outperform the conventional maximal ratio combination and equal gain combination schemes and yield significant performance improvements in spectrum sensing.

  • PDF

Design of Cooperative Communication Protocol for UWB-based Distributed MAC Systems (UWB 기반 Distributed MAC 시스템을 위한 협력 통신 프로토콜 설계)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.460-469
    • /
    • 2012
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. In this paper, we propose a novel cooperative communication protocol adaptive to current UWB link transmission rate. The proposed cooperative communication protocol has compatibility with current WiMedia D-MAC and Wireless USB standard and is executed at each device according to a Relay Node Selection (RNS) criterion.

On the Diversity-Multiplexing Tradeoff of Cooperative Multicast System with Wireless Network Coding

  • Li, Jun;Chen, Wen
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Diversity-multiplexing tradeoff (DMT) is an efficient tool to measure the performance of multiple-input and multiple-output (MIMO) systems and cooperative systems. Recently, cooperative multicast system with wireless network coding stretched tremendous interesting due to that it can drastically enhance the throughput of the wireless networks. It is desirable to apply DMT to the performance analysis on the multicast system with wireless network coding. In this paper, DMT is performed at the three proposed wireless network coding protocols, i.e., non-regenerative network coding (NRNC), regenerative complex field network coding (RCNC) and regenerative Galois field network coding (RGNC). The DMT analysis shows that under the same system performance, i.e., the same diversity gain, all the three network coding protocols outperform the traditional transmission scheme without network coding in terms of multiplexing gain. Our DMT analysis also exhibits the trends of the three network coding protocols' performance when multiplexing gain is changing from the lower region to the higher region. Monte-Carlo simulations verify the prediction of DMT.