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Abstract

Caching of frequently accessed data in multi-hop ad hoc environment is a technique
that can improve data access performance and availability. Cooperative caching, which
allows sharing and coordination of cached data among several clients, can further en-
hance the potential of caching techniques. In this paper, we propose a fuzzy cooperative
caching scheme in mobile ad hoc networks. The cache management of the proposed
caching scheme not only uses adaptively CacheData or CachePath based on data sim-
ilarity and data utility, but also uses the replacement manager based on data profit.
Also, the proposed caching scheme uses a prefetch manager. When the TTL of the
cached data expires, the prefetch manager evaluates the popularity index of the data.
If the popularity index is larger than a threshold, the data is prefetched. Otherwise,
its space is released. The performance of the proposed scheme is evaluated analytically
and is compared to that of other cooperative caching schemes.

Keywords: Cooperative caching, data similarity, data utility, mobile ad hoc networks,
popularity index.

1. Introduction

Mobile ad hoc networks (MANETS) consists of mobile hosts (MHs) such as notebooks,
PDAs, cell phones and so on. These mobile devices can create a wireless network dynam-
ically without the aid of any network infrastructure. Every MH can move arbitrarily and
communicate with other MHs by using multi-hop wireless links. Each MH acts as a router
and forwards data packets to other neighbors in the coverage of its transmission range. This
type of network can communicate with external networks such as Internet through a gate-
way. However, MANETS are limited by intermittent network connections, restricted power
supply and limited computing resources. These restrictions raise several new challenges for
data access applications with respects to data availability and access efficiency. One of the
most attractive techniques to improve data availability is caching. In general, caching results
in (i) enhanced QoS at the clients, i.e., lower jitter, latency and packet loss, (ii) reduced
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network bandwidth consumption, and (iii) reduced data server/source workload. In addi-
tion, the reduction in bandwidth consumption can potentially improve battery life of mobile
hosts (Ting and Chang, 2007; Chand et al., 2007).

Caching has been proved to be an important technique for improving the data retrieval
performance in mobile environments. With caching, data access delay is reduced since
data access requests can be served from the local cache, thereby obviating the need for
data transmission over wireless links. However, caching techniques used in one-hop mobile
environment (i.e., cellular networks) may not be applicable to multi-hop mobile environments
since the data request may need to go through multiple hops. As the mobile clients in ad
hoc networks may perform similar tasks and share a common interest, cooperative caching,
which allows sharing and coordination of cached data among multiple clients, can be used
to reduce bandwidth and power consumption (Chand et al., 2007).

In this paper, we propose a fuzzy cooperative caching scheme (FCCS) in mobile ad hoc
networks to enhance the performance of the COOP scheme proposed by Du and Gupta
(2005). The cache management of the proposed caching scheme not only uses adaptively
CacheData or CachePath based on a fuzzy logic according to data similarity and data utility,
but also uses the replacement manager based on data profit. Also, the proposed caching
scheme uses a prefetch manager. When the TTL (Time to Live) of the cached data expires,
the prefetch manager evaluates the popularity index (PI) of the data. If the PI is larger
than a threshold, the data is prefetched. Otherwise, its space is released. The performance
of the proposed method is evaluated by an analytical evaluation and is compared to that of
other cooperative caching methods: HybridCache and COOP.

The remainder of this paper is organized as follows. Section 2 reviews the related works.
Section 3 describes the proposed FCCS scheme. Section 4 presents a model for analytical
evaluation of FCCS. Section 5 concludes the paper and discusses future works.

2. Related works

A cooperative caching scheme specifies how multiple computing nodes can share and
manage cached data in a collaborative manner. This paper focuses on caching of regular
objects such as text files and web documents. For on-demand data access applications, the
traditional way of resolving a data request is to check the local cache first and send the
request to the server after local cache misses. This scheme, referred to as SimpleCache (Yin
and Cao, 2005), works well as long as the connection to the server is reliable and not too
expensive; otherwise, it results in failed data requests or request timeouts.

To increase data availability and to reduce the cost in terms of data access latency and
energy consumption, hop-by-hop cache resolution allows a node on the forwarding path to
serve as a proxy for resolving the request. If a forwarding node contains an un-expired copy
of the requested data, it can send a reply to the requester and stop forwarding the data
request (Du et al., 2009).

A nodes cooperation zone consists of the surrounding nodes within a r-hop range. The
parameter r is called the radius of the cooperation zone. If a node does not have information
about whether the requested data item is available in the zone, the node can reactively
discover this by flooding the request within the zone. To restrict the flooding range, the
TTL value of the request is set to the zone radius r. The restricted flooding not only has
the potential to discover the closest data location but also can serve as an announcement
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in the neighborhood and effectively segment the whole network into clusters, within which
caching information is shared (Du et al., 2009).

Yin and Cao (2005) presented three cache resolution schemes: CacheData, CachePath,
and HybridCache. In CacheData, forwarding nodes check the passing-by data requests. If a
data item is found to be frequently requested, forwarding nodes cache the data, so that the
next request for the same data can be answered by forwarding nodes instead of travelling
further to the data server. A problem with this approach is that the data could take a
lot of caching space in forwarding nodes. CachePath is similar with CacheData, except
that forwarding nodes cache the path to the closest caching node instead of the data and
redirect future requests along the cached path. This scheme saves caching spaces compared
to CacheData, but since the caching node is dynamic, the recorded path could become
obsolete and this scheme could introduce extra processing overhead. Trying to avoid the
weak points of those two schemes, HybridCache decides when to use which scheme based on
the properties (size and the TTL value) of the passing-by data. The HybridCache technique
represents a combination of CacheData and CachePath. This technique performs better
than either the CachePath or CacheData approach. The cache replacement algorithm in
HybridCache is based upon the access frequency of a data item and the distance to the
same cached copy or to the data source. However, due to the inherent mobility of the host,
such distances can change frequently.

Du and Gupta (2005) proposed COOP, a novel cooperative caching service for data access
applications in MANETSs. The objective is to improve data availability and access efficiency
by collaborating local resources of mobile devices. COOP addresses two basic problems of
cooperative caching: cache resolution and cache management, i.e. how to find the requested
data efficiently and how to manage local cache to improve the capacity of cooperated caches.

Bae (2009) proposed a fuzzy proxy cache scheme for distributed base stations. The pro-
posed scheme predicts the mobility of mobile hosts and uses various cache methods for
neighboring proxy servers inspired by fuzzy-logic-based control rules based on the member-
ship function of the mobile host.

3. Fuzzy cooperative caching scheme

In this paper, we present FCCS, a fuzzy cooperative caching scheme for MANETSs which
aims to improve data availability and access efficiency. FCCS addresses two basic problems
for cooperative caching in MANETS.

e Cache resolution - how does a mobile host decide where to fetch a data item requested
by the user or the application.

e Cache management - how does a mobile device decide which data item to place/purge
in its local cache?

For cache resolution, FCCS tries to discover a data source, which induces less commu-
nication cost by utilizing historical profiles and forwarding nodes. For cache management,
FCCS minimizes caching duplication between neighbor nodes and uses fuzzy cooperative
caches based on data item utility and access similarity to improve the overall performance.



608 Ihn Han Bae

Q&smu.m

Fixed networks Fd “>~_ Ad hoc networks

Fixed router

Data or FCCS Messages Q7

‘ Network Protacl Stack ]

Figure 3.1 FCCS system model.

In this paper, we consider a MANET environment where some of the mobile nodes have
interfaces to other networks such as satellite networks (Figure 3.1). Those nodes serve as
gateways to allow other nodes to communicate with the outside networks. A data source
can reside inside or outside the MANET. The mobile nodes can read data from the data
sources. But only the sources have the privilege to write or update the data they host. The
mobile nodes can cache a copy of the data in its local storage. We assume the TTL scheme
is used to maintain consistency between the client-side cache and the data source. The basic
idea of TTL is that each data item is assigned a TTL value, and the data item is considered
valid as long as the caching time has not exceeded the TTL value.

The system architecture of FCCS resides at middleware level, acts as a proxy for users
applications, and uses the underlying network stack to communicate with FCCS instances
running on other nodes. A running FCCS instance receives data requests from users appli-
cations, and resolves the requests using the cache resolution. The cache management scheme
decides what data to place/purge in the local cache of a mobile device. It discriminates pri-
mary data (non-duplicated copy) and secondary data (duplicated copy) with primary data
at a higher caching priority, so that cooperating caches can store more distinct data items
to improve the overall performance.

3.1. Mobile cache structure

Designing a cache model has to be based on the characteristics of the cached data and
the specific caching environment. In mobile caching, the cached data may be migrated to
the mobile host from other hosts instead of being directly fetched from the original data
servers. To cope with the characteristics of cached data and mobile environments, a mobile
cache structure featured in Figure 3.2 is designed. The mobile cache structure consists of
two parts. The cache structure body is the cached data item.

The header includes ID, Name, Link, TTL, Dist, Size, Origin and Tags. The ID field
contains a UUID (universal unique ID) which the URL of the cached document is hashed.
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Figure 3.2 Mobile cache structure.

Name is the name of the cached data. Because the cached data might be migrated from
other mobile hosts, Link is needed to provide links to mobile hosts that previously owned
or searched for this data. The data server assigns a TTL value to all data items. Mobile
hosts consider a cached copy up-to-date if its TTL has not expired. Due to TTL expiration,
some cached data may be invalidated. Dist is the number of hops to reach the node which
forwards the data. Size is the size of the cached data. Origin indicates whether this current
data replica is fetched from the original data server or is migrated from another mobile
host. Tagging, or labeling content, is part of the collaborative nature of Web 2.0. A tag is
any user-generated word or phrase that helps organize web content and label it in a more
human way. This kind of meta data helps describe an item and allows it to be found again
by browsing or searching (Deitel and Deitel, 2008; Golder and Huberman, 2006). Tags are
chosen informally and personally by the item’s creator. We assume that each data object
has 5 8 tags.

3.2. Cache management

The cache management of FCCS studies how to decide which data item to keep in a
nodes local cache. The goal is to increase cache hit ratios, which largely depend on the
capacity of the cache. The cache management consists of three components: cache manager,
replacement manager and prefetch manager.

3.2.1. The cache manager

The cache manager uses adaptively the CacheData or CachePath based on fuzzy logic
according to the similarity and the utility of a data item. In the CachePath of the cache
manager, a node does not need to record the path information of all passing data. Thus, a
router node only records the data path when it is closer to the caching node than the data
source. Due to mobility, the node which caches the data may move. The cached data may
be replaced due to cache size limitation. As a result, the node which modified the route
should reroute the request to the original data source after it finds out the problem. Thus,
the cached path may not be reliable and using it may adversely impact the overhead. To
deal with this issue, a node caches the data path only when the caching node is very close.
In the CacheData approach, the router node caches the data instead of the path when it
finds that the data is frequently accessed. Since the CacheData approach needs extra space
to save the data, it should be used prudently.

To maximize the capacity of cooperative caches, FCCS tries to reduce duplicated caching
within a short-distance neighborhood, such that the cache space can be used to accommodate
more distinct data items. The CacheData approach categorizes cached data copies based
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on whether they are already available in the neighborhood or not. A data copy is primary
if it is not available within the neighborhood. Otherwise, the data copy is secondary. The
range of neighborhood is provided as a customizable option. The reason for discriminating
primary and secondary data is that the cache miss cost is proportional to the travel distance
of a data request, and primary data usually incur higher cache miss costs than secondary
data. The inter-category and intra-category rules are used to decide caching priorities of
primary and second data, which are described next.

The idea of inter-category cache is to put primary items at a priority level, i.e., secondary
items are purged to accommodate primary items, but not vice versa. Once a node fetches
a data item, it labels the item as primary copy if the item comes from a node beyond the
neighborhood range. Otherwise, if a data item comes from within the neighborhood, we
need to further consider whether the data provider labels the item as primary or secondary.
If the provider already labels its copy as primary, the new copy would be secondary since we
do not intend to have duplicated primary copies for the neighborhood. On the other hand,
if the provider tags its own copy as secondary, the provider needs to attach the information
of the primary copy holder. If the primary copy holder is beyond the neighborhood range,
the new copy is primary copy. Otherwise, the new copy is a secondary copy.We assume
that each mobile host has the tags for preference in the user profile and the user profile also
has 5 8 preference tags. The similarity between two mobile hosts is simply the number of
common tags between the tags of a mobile host and the tags from caching data. Eq. (3.1)
shows the formula we use for computing the ratio of tag sets between the tags of a mobile
host and the tags from caching data.

2x|ANB|

Simi(A, B) = A 13T

(3.1)
where A and B represent the sets of the tags of a mobile host and the tags of a data item d;,
respectively. We map the data similarity to the three basic fuzzy sets: H (high), M (medium)
and L (low) using the membership function as shown in Figure 3.3. The membership function
is a function in [0, 1] that represents the degree of belonging. The membership function fully
defines the fuzzy set. Membership functions on Sim represent fuzzy subsets of Sim. The
membership function which represents a fuzzy set DS (Data Similarity) is usually denoted
by /Jps(SZml)

Los(Sim)

1
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Figure 3.3 Membership degree for the data similarity.

Observe that smaller the size of a data item, the lesser the cache space for the data item
needs. The greater the Dist value of a data item has, the more the utility for the cached
data has. But the larger the Size of the data has, the lesser the utility for the data caching
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has. Accordingly, the utility for cached data item d;, Util; is computed using the expression:

DiSti

Util; = ——.
‘ Size;

(3.2)

We map the data utility to the three basic fuzzy sets: H (high), M (medium) and L (low)
using the membership function as shown in Figure 3.4, where the unit of data size is kilobyte
(KB). Membership functions on Util represent fuzzy subsets of Util. The membership
function which represents a fuzzy set DU (Data Utility) is usually denoted by ppy (Util;).

o (Ut

1

o
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Figure 3.4 Membership degree for the data utility.

To maximize the capacity of cooperative caches, FCCS tries to reduce duplicate caching
within short-distance neighborhood, such that the cache space can used to accommodate
more distinct data items. The inter-category and intra-category rules are used to decide
caching priorities of primary and secondary data. The control rules for FCCS which consider
data similarity and data utility are shown in Table 3.1. For a mobile host, if the data
similarity is high (H) and the data utility is high (H), CacheData (i) is used for managing
the data item. If the data similarity is medium (M) and the data utility is high, CacheData
(j) is used. And, if the data similarity is medium (M) and the data utility is medium
(M), CacheData (k) is used. Where i, j and k are the input parameters which represent
neighborhood range and i<j<k. Also, if the data similarity is low (L) and the data utility
is low (L), CachePath is used for managing the data item.

Table 3.1 The control rules for FCCS.

DU
H M L
H CacheData (i)  CacheData (j)  CacheData (k)
DS M CacheData (j)  CacheData (k) CachePath
L CacheData (k) CachePath CachePath

(input variables) DU: H (high), M (medium), L (low)
DS: H (high), M (medium), L (low)

(output variables)  Cache methods: CacheData (i), CacheData (j),
CacheData (k), CachePath

The intra-category rule is used to evaluate the data items within the same category. For
this purpose, the cache manager calls the replacement manager. In FCCS, the replacement
manager of cache management uses the least profit value (LPV) policy.
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3.2.2. The prefetch manager

When the TTL of the cached data expires, the prefetch manager is called. The prefect
manager evaluates the popularity index (PI) of the expired data. The PI of a data reflects
the access probability of the data item for a mobile host. The popularity index for expired
data item d;, PI; is

Z?: 1 A] ’

where A; is the mean access rate to data item d; and n is total number of data items in
the local cache. A; can be estimated by employing sliding window method of last k access
times. FCCS keeps a sliding window of k most recent access timestamps (t},2,...,t¥) for

data item d; in the cache (Shim et al., 1999). The access rate is updated using the formula:

PI; (3.3)

k

Ay = —r,
ot -tk

(3.4)

where t is the current time and t¥ is the time of k-th most recent access. If less than k
samples are available, all available samples are used. If the computed PI; is greater than a
threshold (dp;), the data is prefetched. Otherwise, its space is released.

3.2.3. The replacement manager

Because of limited cache size, a replacement policy must be adopted to evict data from
the cache when new data arrive. The replacement manager uses the replacement policy
based on the least data profit. At a mobile host, the replacement manager evaluates the
data profit for all cached data items in the mobile host. The larger the mean access rate,
the distance and current TTL of a cached data have, the larger the data profit value of the
cached data item has. Also, the larger the size of a cached data item has, the smaller the
data profit value of the cached data item has. Accordingly, the profit of a cached data item
d;, Profiti is computed by

P t. =
rofit; Size;

(3.5)

The current TTL of a cached data item d;, CTTL; is computed by the following expression:
CTTL; = TTL; — (T — Tj™"al), (3.6)

where T is the time when d; was dispatched from the data server.
The replacement manager deletes the cached data item with the LPV from all cached data
items when the free space is insufficient for accommodating a new data item to be cached.

3.3. Cache resolution

The proposed FCCS uses a composite approach for cache resolution as illustrated in Fig.
3.5. The FCCS forwards the data request to a destination mobile host along the data path
after the local cache misses. If the requested data is in the destination mobile host, the data
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is returned. If no cache is found using previous schemes, the data request is forwarded to
the original data source. Roadside Resolution allows a node on the forwarding path to serve
as a proxy to resolve the request, and roadside resolution is used to resolve the request along
the forwarding path. That is, if the data is in the local cache of a forwarding node or the
local cache of the node, which is in the local path of a forwarding node, the forwarding node
can respond to the request then stop forwarding the data request.

Receives a data request

hit
Checks local cache >

l miss
hit

Path-based resoultion »

l miss
hit

Roadside resoultion >

l miss

Server response

End

Figure 3.5 Resolution process of FCCS.

4. Performance evaluation

The following assumptions are made for the analytical evaluation for fuzzy proxy caching
scheme (Feeney and Nilsson, 2001):

e The response delay and energy cost is 0 if the local cache contains the requested data.
This is a reasonable assumption because the local cache access cost can be ignored
when compared to inter-node communication.

e If a data request cannot be satisfied from the local cache, we assume that the response
delay is proportional to the travel distance in hops of the data request, that is, Re-
sponse_delay=ax Travel_distance and « is a constant. In this analysis, we normalize a
to 1 since this does not change the analysis and comparison results.

If a data request cannot be satisfied from the local cache, we assume that the energy
cost is proportional to the number of messages triggered by the data request, that is, En-
ergy_cost=0x Number_of messages. Similarity, we normalize (3 to 1 since this does not change
the results.

P, is the probability that a mobile host caches a copy of data d. It can be estimated
by the percentage of caching mobile hosts in the network from history profiles. P; can be
different for different data items. The average density p is used to estimate the total number
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Table 4.1 Notations for an analytical evaluation.

Notation Description
PdHCd In HybridCache, the probability that the requested data is in the local cache.
Pde In HybridCache, the probability that the requested data is in the local path.
Pgo In COOP, the probability that the requested data is in the local cache.
P In COOP, the probability that a forwarding node resolves the data request.
P%‘C In FCCS, the probability that requested data is in the local cache.
P, P In FCCS, the probability that the requested data is in the local path.
Pz The probability that a node in the zone of the requesting node has a copy of data d.
P5 The probability that a requesting data is popular.
Py The probability that a data along the local path is not usable. This may be caused by
TTL expiration or broken paths because of node movement.
P The probability that an expired popular data is requested.
Pp Y The probability that the prefetched data are requested.
A Average arrival rate of data requests per minute.
r The radius of the cooperation zone of the requesting node.
Ls The distance in hops between the requesting node and the original data server.
Lf ¢ The average length of the path for a request to reach the node which has.
a valid copy of the data in HybridCache.
Lff ¢ The average length of the path for a request to reach the node which has.
a valid copy of the data in FCCS.
p The average node density.

of mobile hosts in a two-dimensional space. Accordingly, the number of mobile hosts within
r-hop range of the requesting mobile host is estimated by pmr2.

4.1. HybridCache

For the Hybrid caching, if a copy of the requested data is in the local cache of a requesting
node or the local cache of the node, which is in the local path of the requesting node, the
data is returned. If the requesting node misses the requested data, the data request is
forwarded to the original data source. To calculate the average delay, three cases need to
be considered:

1. The requested data is in the local cache.
2. A path is found in the local cache which indicates N; caches the requested data.
Two subcases are possible:
a. A valid data item is found in N;.
b. The data item in NN; is not usable because of a broken path or TTL expiration.
3. No data or path is found in the local cache.

The probabilities of cases 1, 2(a), 2(b), and 3 are P (1 — PfC)pr(l - P7), (1 -

P)P]" P}

and (1—PHe)(1- P;I Py, respectively. Therefore, the average response delay is

Driypridcache = 0 x Pi¢ + LHe(1 — PP [(1 — P§) + Ly P§] + Ls(1 — Py°)(1 — P,}'?)

(4.1)
= LH(1 — PJ*)P"P [(1 — P§) + L,P§] + Ly(1 — P°)(1 — P;'?).
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The average energy cost is

Enypriacache = LE¢(1 = PV PP [(1 — P§) + LyP] + Ly(1 — Py°)(1 - P;'P).  (4.2)

4.2. COOP

The cache resolution of COOP uses the cocktail approach that combines hop-by-hop res-
olution and cooperation zone resolution by first trying to resolve a data request in the zone
and, if that fails, the request is sent toward the server allowing intermediate nodes to capture
and resolve the request. Let r be the radius of the cooperation zone, and P the probability
of a node in the zone caches d locally. The probability of getting the requested data d from
within the cooperation zone is as follows.

P(r)=1-(1- Pj)r™"!

Let PJ be the probability of a forwarding node resolves the data request. In COOP, the
probabilities of possible situations are as follows. The probability that the request is resolved
locally is Pj, the probability that the request is resolved within the cooperation zone of the
requested node is P(r), the probability that the request is resolved at i (i=1, 2,..., L-r-1)
hop beyond the cooperation zone is ((1 — P(r)))PdCf(l - ng)i_l, and the probability that
the request is solved at the data server is (1 — P(r))(1— Pdcf)L_7"_1
response delay is

. Therefore, the average

Dcoop = 0% P + (1= PO{rP(r) + (1= P(r)lr + Py’ (1+2(1 - )+
o (L= = 1)1 = PSHYE=2) 4 (L — ) (1 — PEHYE1)

= (1 - PS°)rP(r) + (1 — P(r)) (4.3)
L—r—1
[r+ P57 Z (1—PSHYi=t (L —r)(1 = PSHL—.

Upon a local miss and if the data is found within the zone, the energy cost is taken to be
pry2. Therefore, the average energy cost is

Ecoop = (1= P{®)(prr®) x P(r) + (1 = P(r)) (4.4)
L—r—1
[r+ Pcf Z Pcf =y (L—r)(1— Pdcf)L_T_l]-

4.3. FCCS

The average response delay of FCCS is calculated based on three possible situations: a
data request can be satisfied from the local cache or local path, from a node in forwarding
path, or from the data server. The probability that no requested data is found in the local
cache or local path is as follows.

Py = (1= P{)(P"F{)(1 - P;")
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The average response delay that the requested data is in the local cache or local path of
the i-th forwarding node is as follows.

D’L

ey = 0 % (P P)TUPEe 4 LI % (1 — PIo)PyP)

Therefore, the average response delay of FCCS is
Drpces =0x P+ LE°(1 = P{)P{" + 1 x P;P[P[* + LE“ 4+ (1 — P/*)P;"]
+2 % (PJ)2[PFe 4 LE® x (1 - PYO)PIP)] + -
+(Ls = 1) x (P P)e= PFe + LT x (1 — PY¢)P, ") + Ly x (P;")" (4.5)
Le—1

= LI°(1 - PJ)P;? + Z i(PyP) [PFe + LE(1 — PY€)P)") + Ly(PyP)"=.
=1

The average energy cost is

Ls—1
Eroes = Ly (1= P{)P; "+ Y i(Py)' [P{° + LL°(1 = P{*) Py *] + Lo(P*)".
=1
(4.6)

The parameters and values of the performance evaluation for FCCS are shown in Table
4.2. In FCCS, the probability that the requested data is in the local cache PI¢ is computed
as follows:

Fec _ pFed h
Py =Py + Py,

where PI'°? is the local hit ratio by the CacheData method of FCCS. In (Jin and Bestavros,
2000), Jin presented an on-line algorithm that effectively captures and maintains an accurate
popularity profile of Web objects requested through a caching proxy and designed a caching
algorithm that utilizes such information. The local hit ratio of Jins caching algorithm is
higher than that of other caching algorithms to 0.08 degree. Therefore, we consider two
cases to evaluate FCCS performance.

e FCCS (A) - the value of PI' is higher than those of PH¢ and P{° to 0.08 degree
because the proposed FCCS utilizes not only data similarity and data utility for caching
but also data profit for replacement.

e FCCS (B) - the value of PFed equals to those of PH¢ and P{°.

e The local hit ratio from the prefetched data P;’d is computed by

AX Pl ox PV
pho = _wd T d 4.7
ph TTI ( )
We assume that access rate of a data is attended with Zipf-like distribution (Zipf, 1949).
In case that the number of data is 100 and the threshold of popularity index is 0.02, is
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approximately 0.55 and the number of 9 data items of total 100 data items is only popular.
Also, we assume that Py ,q is 0.9 because all prefetched data are popular data, According,

the value of P;’d is

6 x 0.9 x 0.55

.01.
300 00

h _

Table 4.2 Parameters and values for performance evaluation.

Parameter Value
PpHc pCo 0.5
P%Cd ¢ 0.58, 0.5
PZ‘d 0.01
PP prP 0.2
p? 0.012
P 0.07
p¢t 0.02
d

A (min) 6
TTL (min) 300
r 36
Spr 0.02
L 10 25
LHe, Lle 3

p 0.6
i, k 3,4,5

12

—e— HybridCache
0 || —m—coop | s
—A— FCCS (A)

—»—FCCS (B)

4././_/'

10 15 20 25
Ls

©

Average delay

Figure 4.1 Expected travel distance with different Ls.

Fig. 4.1 shows the expected travel distance in hops between the requesting node and the
original data server (Ls) in case that r is 3. From this figure, we know that the expected
travel distance of FCCS is shorter than those of HybridCache and COOP regardless of Ls,
and the expected travel distance of FCCS (B) closely equals to that of FCCS (A). Even
though Ls is increased, the expected travel distance of FCCS is nearly constant. But the
expected travel distances of HybridCache and COOP increase linearly as Ls increases.
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Figure 4.2 Expected energy cost with different r.

Fig. 4.2 shows the expected energy cost according to the radius of cooperation zone (r)
in case that Ls is 20. From this figure, we know that the expected energy cost of COOP
increases linearly as r increases and the expected energy cost of FCCS is smaller than those
of HybridCache and COOP regardless of r, and the expected energy cost of FCCS (B) closely
equals to that of FCCS (A).

The proposed FCCS is superior to HybridCache and COOP in two performance criteria:
average delay and average energy cost. Therefore, we identify that the proposed FCCS is
most applicable cache scheme to MANETS.

5. Concluding remarks

In this paper, we proposed FCCS, a fuzzy hybrid caching scheme for mobile ad hoc net-
works. The cache management of FCCS not only uses adaptively CacheData or CachePath
based on fuzzy logic according to data similarity and data utility, but also uses the a re-
placement manager based on data profit. Also, the FCCS uses a prefetch manager. When
the TTL (Time to Live) of the cached data expires, the prefetch manager evaluates the PI
of the data. If the PI is larger than a threshold, the data is prefetched. Otherwise, its
space is released. The performance of FCCS is evaluated analytically and is compared to
that of HybridCache and COOP, where we consider two cases: FCCS (A) and FCCS (B) to
evaluate FCCS performance. FCCS (A) is that the local cache hit ratio of FCCS is higher
than those of HybridCache and COOP to 0.08 degree because the proposed FCCS utilizes
not only data similarity and data utility for caching but also data profit for replacement,
and FCCS (B) is that the local cache hit ratio of FCCS equals to those of HybridCache
and COOP. From the evaluation results, we know that the proposed FCCS is superior to
HybridCache and COOP in two criteria: average delay and average energy cost, and the
performance of FCCS (B) closely equals to that of FCCS (A). Therefore, we confirm that
the proposed FCCS is most applicable cache scheme to MANETS.

Future work includes a detailed performance analysis of FCCS through changing param-
eter values and simulations, and studying on semantic caching schemes for MANETSs and
fuzzy proxy caching schemes for SNs (Sensor Networks) and VANETSs (Vehicular Ad Hoc
Networks).
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