• Title/Summary/Keyword: Cooperative 통신

Search Result 742, Processing Time 0.03 seconds

Combined Relay Selection and Cooperative Beamforming for Physical Layer Security

  • Kim, Jun-Su;Ikhlef, Aissa;Schober, Robert
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.364-373
    • /
    • 2012
  • In this paper, we propose combined relay selection and cooperative beamforming schemes for physical layer security. Generally, high operational complexity is required for cooperative beamforming withmultiple relays because of the required information exchange and synchronization among the relays. On the other hand, while it is desirable to reduce the number of relays participating in cooperative beamforming because of the associated complexity problem, doing so may degrade the coding gain of cooperative beamforming. Hence, we propose combined relay selection and cooperative beamforming schemes, where only two of the available relays are selected for beamforming and data transmission. The proposed schemes introduce a selection gain which partially compensates for the decrease in coding gain due to limiting the number of participating relays to two. Both the cases where full and only partial channel state information are available for relay selection and cooperative beamforming are considered. Analytical and simulation results for the proposed schemes show improved secrecy capacities compared to existing physical layer security schemes employing cooperative relays.

A Full Utilization of Space-time Block Code in Cooperative Communications (협력 통신에서 시공간부호의 최대 사용 효율)

  • Tin, Luu Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.115-120
    • /
    • 2008
  • We propose a cooperative transmission scheme that uses Hurwitz-Radon space-time code for the relays which help the source to transmit signals to the destination, the full utilization here is that the destination utilizes the broadcast symbols from the source. We present the 2 transmit antennas case in detail because of its simplicity and high data rate. Analysis and simulations show that the proposed scheme achieves full diversity order of 3. The maximum likelihood receiver is also derived and the combining scheme is shown to be very simple.

Design of SoQ-based Cooperative Communication Protocol for UWB-based Distributed MAC/WUSB Systems (UWB 기반 Distributed MAC 시스템을 위한 SoQ 기반 협력 통신 프로토콜 설계)

  • Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.345-355
    • /
    • 2012
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC)/WUSB protocol based on UWB for high speed wireless home networks and WPANs. In this paper, we propose a novel SoQ-based cooperative communication protocol adaptive to current UWB link transmission rate and QoS measure. The proposed SoQ-based cooperative communication protocol has compatibility with current WiMedia D-MAC/Wireless USB standard and is executed at each device according to a SoQ-based Relay Node Selection (RNS) criterion.

Bandwidth-Efficient Transmission Protocol for Cooperative MIMO: Design and Analysis (분산 다중 안테나 기반의 상호 협력 통신을 위한 전송 프로토콜의 설계 및 분석)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.418-425
    • /
    • 2008
  • In this paper, we propose two different types of cooperative transmission protocols, referred to as spatial multiplexing with receive diversity (SMRD), that are bandwidth-efficient. We show that the BER performance can be significantly improved with a proper design of SMRD protocol under the AF (Amplify-and-Forward) and the DF (Decode-and-Forward) modes of relaying, when there is no interference among all symbols transmitted in the same time slot. BER analysis and our simulation result show that the proposed transmission protocol achieves a significant gain over no-cooperation (direct transmission) without any bandwidth expansion.

Performance of Cooperative Networks with Mixed Relaying Protocols in Railway Environments (철도환경에서 혼합 중계 프로토콜을 이용한 협력 네트워크의 성능)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.271-276
    • /
    • 2016
  • Cooperative networks enhance the overall communication performance by combining signals from relay nodes and direct signal. In this paper, we analyze the performance of cooperative communication systems which use mixed relaying protocols. By assuming several relay nodes exist between the source node and destination node, we consider the systems use not a single relaying protocol but both decode-and-forward and amplify-and-forward protocols randomly. We analyze the effect of each relying protocol for the overall system performance, and also consider the performance depending on the relay location. Differential modulation scheme which demodulates signal without channel state information is adopted where it can be applicable fast varying channel such as railway environments.

A Cooperative Transmission Scheme Based on Alamouti Coding for Cognitive Radio Networks Over Frequency Selective Fading Channels (주파수 선택적 페이딩 채널에서 안치 무선 통신을 위한 Alamouti 코딩 기반 협력 전송 기법)

  • Kang, Seung-Goo;Kim, Jun-Hwan;Baek, Jee-Hyeon;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.403-411
    • /
    • 2011
  • This paper addresses a cooperative transmission scheme based on Alamouti coding for cognitive radio networks over frequency selective fading channels. In the proposed scheme, the Alamouti coded form at the destination node is constructed through a simple combination of symbols at the source node, instead of the time-reversal operation and the conjugate operation at the relay nodes used in the conventional scheme. Numerical results show that the proposed scheme achieves a higher order cooperative diversity than that of the conventional scheme.

Performance Analysis of 1-2-1 Cooperative Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 1-2-1 협력 프로토콜에 관한 연구)

  • Choi, Dae-Kyu;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.113-119
    • /
    • 2008
  • Conventional 1-1-1 cooperative protocol offers path-loss gain as advantage of multi-hop and spatial diversity which is equivalent to MIMO system. This protocol is enable to get higher reliability and reduction of power consumption than those of the single-hop or multi-hop. But the 1-1-1 cooperative protocol get only the diversity order 2 and limited path-loss reduction gain because this protocol has a single cooperative relay. We propose 1-2-1 cooperative protocol using two cooperative relays R1, R2. The 1-2-1 cooperative protocol can improve path-loss reduction and increase diversity order 3. Moreover, the cooperative relay R2 attains diversity order 2. The signaling method in transmission uses DF (Decode and Forward) or DR (Decode and Reencode) and 1-2-1 DF/DR cooperative protocol are applied to clustering based wireless sensor networks (WSNs). Simulations are performed to evaluate the performance of the protocols under Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

  • PDF

Relay Cooperative Transmission Scheme for Distributed MAC Protocol-Based Logistic Applications (분산적인 매체접근제어(MAC) 프로토콜 기반 물류 시스템을 위한 릴레이 협력통신 방안)

  • Joo, Yang-Ick;Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.423-432
    • /
    • 2011
  • In a warehouse, because there exist frequent changes of stock status and the quality of some contents are influenced by the environment such as temperature, fast and accurate management of the warehouse's environment is very important for Warehouse Management Systems (WMS). However, due to the absence of a unified standard for the communication protocol between RFID nodes, the connection between RFID nodes can be broken in case of movement of a RFID reader to a region with a different protocol. Moreover, centralized MAC schemes for RFID communications in previous studies have severe problems. For an example, if a cluster header disappears from the cluster due to the cluster header's movement or bad channel conditions, the RFID member nodes of the cluster waste lots of time and energy to re-elect a new cluster header. Therefore, in this paper, we propose a WiMedia Distributed MAC (D-MAC) scheme for RFID communications and its cooperative relay transmission scheme for WMS applications Simulation results show performance improvement at the RFID node by using the proposed cooperative relay transmission scheme.

Minimum Energy Cooperative Path Routing in All-Wireless Networks: NP-Completeness and Heuristic Algorithms

  • Li, Fulu;Wu, Kui;Lippman, Andrew
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.204-212
    • /
    • 2008
  • We study the routing problem in all-wireless networks based on cooperative transmissions. We model the minimum-energy cooperative path (MECP) problem and prove that this problem is NP-complete. We hence design an approximation algorithm called cooperative shortest path (CSP) algorithm that uses Dijkstra's algorithm as the basic building block and utilizes cooperative transmissions in the relaxation procedure. Compared with traditional non-cooperative shortest path algorithms, the CSP algorithm can achieve a higher energy saving and better balanced energy consumption among network nodes, especially when the network is in large scale. The nice features lead to a unique, scalable routing scheme that changes the high network density from the curse of congestion to the blessing of cooperative transmissions.

Selection Based Cooperative Beamforming and Power Allocation for Relay Networks

  • Liu, Yi;Nie, Weiqing
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2011
  • Cooperative beamforming has previously been proven to be an efficient way to improve the cooperative diversity. This method generally requires all relay nodes to participate in beamforming, which can be seen as "all participate" cooperative beamforming. However, not all relay nodes have constructive impacts on the end-to-end bit error rate (BER) performance. Based on this observation, we propose a new cooperative scheme which only selects those "appropriate" relay nodes to perform cooperative beamforming. Such relay nodes can be simply determined with mean channel gains. Therefore, the selection complexity is significantly reduced as global instantaneous channel state information is not required. This scheme guarantees that energy is only allocated to the "appropriate" relay nodes, and hence provides superior diversity. We also prove that power allocation among source and selected relay nodes is a convex problem, and can be resolved with lower computational complexity. Simulation results demonstrate that our scheme achieves an essential improvement in terms of BER performance for both optimal and limited feedback scenarios, as well as high energy-efficiency for the energy-constrained networks.