• 제목/요약/키워드: Cooling tower water

검색결과 85건 처리시간 0.022초

수냉식변압기 냉각튜브의 부식특성 평가에 관한 연구 (A Study on Evalution of Corrosion Properties in cooling tube of water cooling transformers)

  • 정년호;민병연;박현주
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.216-222
    • /
    • 2010
  • Most of the thirteen substations in operation in the metropolitan area were installed around the year 2000, and since water cooling methods are used to directly withdraw heat from transformer oils, a stable supply of electric power is required through optimal maintenance of facilities. The water cooling tower installed outdoors, which uses the water supply as sprinkler water, experiences the most problems. Since more than 90% of the cooling water is reused, the dissolved composition in the water becomes concentrated due to long operating hours, and impurities dissolve in the water due to air flowing in from the outside, forming hard scales on the outer surface of the cooling tube, and in extreme cases, reacting with the tube material composition, leading to corrosion. As a result, not only is cooling efficiency lowered, but in extreme cases the cooling tube must be replaced. In this study, the characteristics and composition of the scales formed on the cooling tube were analyzed and corrosion characteristics of material types were identified in order to find an efficient maintenance method for cooling tubes. In addition, the degree of dissolution of various chemicals were investigated during the removal of scales that have been formed.

주상복합의 실외기 형태에 따른 냉방시스템 성능 평가 (The performance evaluation of outdoor unit cooling system in a residential apartment complex)

  • 경서경;김윤진;임정희;김병선
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.263-268
    • /
    • 2008
  • In a residential complex case, the efficiency of land use are maximized, but a variation of external condition such as load in-equality, the increase in wind velocity and solar radiation by a height causes increasing energy in a building. Besides, because of increasing window size for a lighting and a view, it comes heating load in winter and cooling load in summer. A choice of cooling-system is important for this reason. Recently an internal high-rise residential complex installs an air-cooling system and operates individual heating. However, this study applies water-cooling used one public cooling-tower instead of an air-cooling system, also with an efficiency test of an air and a water-cooling system, consider an internal applicability.

  • PDF

밀폐형 냉각탑용 열교환기에서의 물질전달 (Mass Transfer from Heat Exchanger for Closed Wet Cooling Tower)

  • 유성연;김진혁;한규현;김주상;유해성;박형준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1119-1122
    • /
    • 2009
  • The use of cooling towers in the air conditioning systems of buildings is increasing. In closed wet cooling towers, the heat transfer between the air and surface tubes can be composed of the sensible heat transfer and the latent heat transfer. The latent heat transfer is affected by the air and spray water. This study provides a designing methodology of heat exchanger for closed wet cooling tower. The correlation equation was derived to interpret the mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental results. The results from this correlation equation showed fairly good agreement with experimental data.

  • PDF

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

Recovery of water and contaminants from cooling tower plume

  • Macedonio, Francesca;Frappa, Mirko;Brunetti, Adele;Barbieri, Giuseppe;Drioli, Enrico
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.222-229
    • /
    • 2020
  • Membrane assisted condenser is an innovative membrane operation that exploits the hydrophobic nature of microporous membranes to promote water vapor condensation and recovery. It can be used for water and chemicals recovery from waste gaseous streams. In this work, the testing of membrane condenser for water and ammonia recovery from synthetic streams (i.e., a saturated air stream with ammonia) simulating the plume of cooling tower is illustrated. The modeling of the process was carried out for predicting the membrane-based process performance and for identifying the minimum operating conditions for effectively recovering liquid water. The experimental data were compared with the results achieved through the simulations showing good agreement and confirming the validity of the model. It was found that the recovery of water can be increased growing the temperature difference between the plume and the membrane module (DT), the relative humidity of the plume (RHplume) and the feed flow rate on membrane area ratio. Moreover, the concentration of NH3 in the recovered liquid water increased with the growing DT, at increasing NH3 concentration in the fed gaseous stream and at growing relative humidity of the feed.

전력구트라프간접수냉방식에서의 지중송전케이블에 대한 열해석 (A Thermal Analysis for the Underground Power Transmission Cable by a Water Pipe Cooling Method with Trough in Tunnel)

  • 박만흥
    • 태양에너지
    • /
    • 제15권3호
    • /
    • pp.59-73
    • /
    • 1995
  • 원활한 전력공급을 위해 지중송전케이블에서 발생된 열을 제거하기 위한 방법으로 전력구트라프간접수냉방식이 적용된 지중송전계통에 대한 각 주요 구성요소의 열해석을 수행하였다. 열해석을 수행한 결과, 주어진 조건에서 냉동기가 채택된 냉동장치에서는 냉각수유량은 $2{\sim}3{\ell}/s/pipe$, 팬에 의한 풍속은 $1{\sim}2m/s/fan$인 경우에 지중송전계통의 원활한 전력공급을 위한 냉각계통의 최적조건으로 계산되었다. 반면에 냉각탑만을 설치한 경우에는 냉각수유량 및 풍속이 각각 $2{\sim}3s/pipe$ 및 6 m/s/fan이 최적조건으로 계산되었다. 그러나 냉각탑만이 설치된 경우에는 풍속이 너무 커져서 용량이 큰 팬의 설치 및 전력구내에서 작업자의 작업조건에 적합하지 않다. 따라서 본 연구의 주어진 조건하에서 지중송전계통의 냉동계통은 냉동기가 설치된 냉동장치가 바람직하다.

  • PDF

태양열 실증 시스템의 냉방 및 급탕 일일 열성능 (Thermal performance of solar cooling and hot water for the demonstration system)

  • 이호;김상진;주홍진;곽희열
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.564-569
    • /
    • 2007
  • This study describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about 350㎡ was heated and cooled with the solar system. The system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, subsidiary tank, absorption chiller, chiller storage tank, and cooling tower. The results of the experimental study indicated that the total solar energy gain as daily performance on a sunny day (August 25, 2007) with total daily radiation of $606\;W/m^2$ was 671 kWh, the collecting efficiency of 55%. In the case of supplies to heat source more than $83^{\circ}C$, cooling time operated by solar was driven 8.8 hours, cooling energy generated by solar system was 179 kWh and the solar cooling fraction was 79.2%, and hot water supplied with surplus heat source by the solar system was 201 kWh.

  • PDF

하나로 2차 냉각펌프의 고진동 해소방안 (The Solution of Severe Vibration Problen of the Secondary Cooling Pump in HANARO)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제5권4호
    • /
    • pp.26-31
    • /
    • 2002
  • The heat produced by the fission in the fuel of HANARO, 30 MW of research reactor, was transferred from the primary cooling water to the secondary cooling water through heat exchangers. The secondary cooling water absorbing the heat was circulated by secondary cooling pumps and cooled through 33 MW of cooling tower. Each capacity of the three secondary cooling pumps was fifty percent ($50\%$) of full load. The two pumps were normally operated and the other pump was standby. One of the secondary cooling pumps has often made troubles by high vibration. To release these troubles the pump shaft has been re-aligned, the pump bearing has been replaced with new one, the shaft sleeve has been replaced with new one, the shaft and the impeller have been re-balanced representatively and/or the vibration of motor has been tested by disconnecting the shaft of pump. But the high vibration of pump cannot be cleared. We find out the weight balance trouble of the assembly in which the impeller is installed in the shaft. After clearing the trouble, the high vibration is relieved and the pump is operated smoothly. In this paper, the trouble solution shooting method of secondary cooling pump is described including the reason of high vibration

하나로 2차 냉각펌프의 고진동 해소방안 (The Solution of High Vibration of the Secondary Cooling Pump in HANARO)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.197-202
    • /
    • 2001
  • The heat produced by the fission in the fuel of HANARO, 30 MW of research reactor, was transferred from the primary cooling water to the secondary cooling water through heat exchangers. The secondary cooling water absorbed the heat was circulated by secondary cooling pumps and cooled through 33 MW of cooling tower. Each capacity of the three secondary cooling pumps was fifty percent ($50\%$) of full load. The two pumps were normally operated and the other pump was standby. One of the secondary cooling pumps has often get troubles by high vibration. To release these troubles the pump shaft has been re-aligned, the pump bearing has been replaced with new one, the shaft sleeve has been replaced with new one, the shaft and the impeller have been re-weight balanced representatively or the vibration of motor has been tested by disconnecting the shaft of pump. But the high vibration of pump cannot be cleared. We find out the weight balance trouble of the assembly that the impeller is installed in the shaft. After clearing the trouble, the high vibration is released and the pump is operated with smooth. In this paper the trouble solution of secondary cooling pump is described including the reason of high vibration.

  • PDF

냉각탑수의 레지오넬라균과 박테리아균 등 미생물 분포 및 상관성 비교 (A Comparison of Legionella and Bacteria etc. microbe distribution and correlation in Cooling Towers Water)

  • 방선재;이철민;김윤신;선우영;박용배
    • 환경위생공학
    • /
    • 제17권3호
    • /
    • pp.1-6
    • /
    • 2002
  • This study was carried out to investigate the distribution of Legionella spp and microbe from cooling towers water of Public establishments in Seoul and Gyeonggi-Do. As results of this study, the cooling tower 132 sites were detecting L. pneumophila in order to July(12%) > August (14%) > June, September no-detected. The public establishments were detecting L. pneumophila in order to Department store(27.3%) > Hospital(8.7%) > Office(5.9%) > Big Mart(5.0%) > Hotel, Subway no-detected. The correlation coefficient pH and L.pneumophila showed 0.62(p=0.05), 0.27(p=0.45) in temperature and L.pheumophila, 0.40(p=0.25) in turbidity and L.pneumophila.