• Title/Summary/Keyword: Cooling textiles

Search Result 36, Processing Time 0.019 seconds

A Study on Clothing Purchasing Behaviors and Design Preference of Summer Clothes using Cooling Textiles (냉감소재를 사용한 여름철 의류의 구매행동과 디자인 선호도 연구)

  • Kwon, Eun-Sun;Lee, Mi-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.2
    • /
    • pp.55-70
    • /
    • 2014
  • The purpose of this study was to investigate purchasing behaviors of summer clothes using cooling textiles and clothing design preference in summer season. The subjects were 623 married women aged from 30s to 60s. The research method was a survey and the measuring instruments consisted of purchasing behaviors of summer clothes using cooling textiles, clothing design preference in summer season, and subjects' demographics attributions. The data were analyzed by frequency analysis, multiple response analysis, cross tabs analysis, and $x^2$ test, using SPSS statistical program. The results were as follows. First, important clothing selection criteria were design, price, and textiles. The main items using cooling textiles that female consumers purchased were T-shirts, pants, and outdoor & sportswear. Main information sources of summer clothes using cooling textiles were internet and store display, and purchasing places were fashion outlet, internet, brand store, and department store. Second, female consumers most preferred comfortable and casual style. They mainly preferred white and blue color, pastel and pale tone, plain pattern, and cotton and functional materials in summer season. Third, there were many important differences among 4 age groups on purchasing behaviors of summer clothes using cooling textiles and design preference in summer season.

  • PDF

Development of Cooling Garment for Extremely Hot Environment Using a Peltier Device and its Comfort Properties (고온환경 작업을 위한 펠티어 소자 냉각복 개발 및 쾌적성 평가)

  • Jung, Ye-Lee;Chae, Young-Jin;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • This paper reports on a prototype cooling garment applying a cooling module. The cooling module was composed of a Peltier device, a cold sink, a heat sink and two fans. A constant box was used to evaluate the cooling effect of the module. Two cooling modules were attached on each side of the garment. The wear trial was conducted using 10 male subjects in an environmental chamber maintained at $30{\pm}0.5^{\circ}C$, $50{\pm}5%$RH. Subjective sensations of thermal, humidity, and comfort were surveyed. Statistical package SPSS12.0 was used for the t-test and the Wilcoxon signed-rank test. The results showed that most effective cooling module decreased the temperature of the constant temperature box by $-4.9^{\circ}C$. The micro-temperature of the cooling garment with a Peltier device was lower than the control garment during the exercise. In particular, the chest skin temperature was $1.5^{\circ}C$ lower with the cooling garment than the control. The maximum temperature difference was $-2.57^{\circ}C$ on the sides of the $1^{st}$ layer. Subjective thermal sensation from wear trials of the Peltier device attached garment was lower than the control garment. Subjects felt more comfortable with the cooling garment in almost all the periods.

Study of Efficient Cooling Part for Cooling Clothes Development (냉각복 개발을 위한 효율적 냉각부위 규명에 관한 연구)

  • 최정화;황경숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.6
    • /
    • pp.771-778
    • /
    • 2002
  • Cooling clothes especially cooling vest are being considered for as an efficient way to reduce heat strain under hot environment. But wearing ice gel or ice-based cooling vest caused discomfort to subjects due to the weight of vest. Therefore, this study was executed to find efficient cooling parts and to reduce vest weight by cooling only these parts. Two male subjects were exposed to heat(40$^{\circ}C$, 30%RH) with A type(breast+back+abdomen+waist), B type(breast+back+waist), C type(breast+back+abdomen) and D type(breast+back) cooling vest that distinguished with cooling part. The results were as follows; When subjects were C type and D type vest, sweat volume was less and skin temperature was low. Heart rate and rectal temperature were low in B type and D type. These results suggest that excessive cooling of breast and abdomen may exert a bad influence to health and cooling of back is desirable.

Developing Liquid Cooling Garments to Alleviate Heat Strain of Workers in Summer and Exploring Effective Cooling Temperature and Body Regions (여름철 작업자들의 고체온증 예방을 위한 액체냉각복 개발 및 효과적인 냉각온도와 인체 냉각부위 탐색)

  • Jung, Jae-Yeon;Kang, Juho;Seol, Seonhong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.250-260
    • /
    • 2020
  • The purpose of the present study was to explore the most effective body region and cooling temperature to alleviate heat strain of workers in hot environments. We developed liquid cooling hood, vest, sleeves and socks and applied the water temperatures of 10, 15, 20, and 25℃ through the liquid cooling garments in a hot and humid environment (33℃ air temperature and 70% RH air humidity). A healthy young male participated in a total of 16 experimental trials (four cooling garments × four cooling temperatures) with the following protocol: 10-min rest, 40-min exercise on a treadmill and 10-min recovery. The results showed that rectal temperature, mean skin temperature, and ratings of perceived exertion during exercise; heart rate and diastolic blood pressure during recovery; and total sweat rate were lower for the vest condition than other garment conditions(p < .05). However, there was no differences in mean skin temperature among the four cooling garments when we compared the values converted by covering area(%BSA). When we classified the results by cooling temperature, there were no consistent differences in thermoregulatory and cardiovascular responses among the four temperatures, but 25℃ water temperature was evaluated as being the most ineffective cooling temperature in terms of subjective responses. In conclusion, the results indicated that wearing cooling vest with < 20℃ cooling temperature can alleviate heat strain of workers in hot and humid environments. If the peripheral body regions are cooled with liquid cooling garments, larger cooling area with lower cooling temperature than 10℃ would be effective to reduce heat strain of workers. Further studies with a vaild number of subjects are required.

Efficacy of Cooling Vests for Alleviating Heat Strain of Farm Workers in Summer (여름철 농민의 서열 부담 경감을 위한 냉각조끼의 성능 평가)

  • Choi Jeong-Wha;Kim Myung-Ju;Lee Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1176-1187
    • /
    • 2005
  • The purpose of this study was to evaluate the efficiency of cooling vests developed for farm workers harvesting red pepper in summer. The study was performed using the following two steps: 1) Climatic chamber test, 2) Field test. For the chamber test, a work environment was simulated as $33^{\circ}C$ and $65\%$RH, and the thermo-physiological and subjective responses were measured with and without cooling vests. Twelve young males participated as subjects. For the field test, three farmers participated while harvesting red pepper on the form, in summer. The measurements used were same as in the chamber test. Subjects were tested without any cooling vests, as a control. They were tested wearing vests with 2 frozen gel packs (CV2: Cooling area, $308cm^2$), and vests with 4 frozen gel packs (CV4: Sooting area, $616cm^2$). As a result of the chamber test, rectal temperature($T_{re}$) and mean skin temperature( $T_{sk}$) were lower in both CVs than in Control, and this tendency was statistically significant in CV4 (p<.05). Clothing microclimate temperature ($T_{clo}$) and total sweat rate (TSR) were significantly lower when wearing cooling vests (p<.05) Heart rate (HR) was also lower in wearing cooling vests than in Control, and the speed of recovery to the comfort level was faster when the subjects wore cooling vests. In addition, subjects felt 'less hot, less humid, and less uncomfortable' in both CVs than in Control. Field tests showed a similar tendency with the chamber tests. In particular, wearing the cooling vest was effective in restraining the raise of $T_{clo}$ on the back. It can be concluded that the cooling vest was effective in alleviating heat strain and discomfort in both the chamber test and the field test, despite the cooling area of the cooling vest being just $3.4\%$ of the body surface area ($616cm^2$).

Effectiveness of Cooling Vest in Hot Environment (더운환경에서의 냉각조끼의 착용효과에 관한 연구)

  • 최정화;황경숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.83-90
    • /
    • 2001
  • Cooling garments are being considered for reducing heat strain in hot environment. We evaluated the effectiveness of ice gel-based cooling vest in hot environment both resting and exercising. Four male subjects were exposed to heat(4$0^{\circ}C$, 50%RH) with vest or without it. The results were as follows; In case of the trial wearing ice gel-based cooling vest, total body weight loss, and local sweat volume were less than those without it. Mean skin temperature, rectal temperature, pulse, energy expenditure, temperature of inside clothes, and humidity of inside also were lower than those without cooling vest. By subjective thermal sensation, subjective humidity sensation, and thermal comfort sensation, it was proved that non-wearing vest decreased comfort than wearing that. These results suggested that wearing ice gel-based cooling vest reduced human heat strain in hot environment both resting and exercising.

  • PDF

Comparison of Cooling Effects by Body Part to Increase Thermal Comfort (열적 쾌적성 증대를 위한 부위별 냉각 효과 비교)

  • Soyoung Park;Yejin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.501-510
    • /
    • 2024
  • This study aimed to compare the cooling effect of specific body parts to increase workers' thermal comfort. The parts to be cooled comprised the head and neck; the coolant was a phase change material. The participants were ten men in their 20s of average size according to the 8th Size Korea. The experiment was conducted under the following conditions: 28.0 ± 0.5℃, 60.0 ± 5.0% RH, and 0.2 ± 0.1m/s. The exercise consisted of participants moving for 15 min at a constant speed of 80 BPM; later, a subjective sensation was performed, and the clothing surface temperature was measured. In doing so, heat, wetness, and discomfort after exercise were confirmed to have increased without a coolant. Significant differences over time appeared only when no coolant was used, showing that thermal comfort decreased. Despite the addition of coolant, the clothing surface temperature gradually increased over time, but it decreased with coolant rather than without it. Therefore, additional coolant areas, a lower temperature, and simultaneous cooling convection were required to improve thermal comfort.

Subjective Wear Test and Fit of Women's Sports Underwear Made of Cool-Touch Fabric (냉감소재로 제작한 여성 스포츠 언더웨어의 피트성과 착용시 주관적 평가)

  • Kim, Soyoung;Lee, Heeran;Choi, Jiyoung;Hong, Kyunghi
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.4
    • /
    • pp.505-514
    • /
    • 2017
  • Although studies on the development of cool touch fabrics have been conducted widely, the effects of fitted pattern on enhancing the cooling sensation are insufficient. To investigate the effect of cool-touch fabric and fit of women's sports underwear, 3D and 2D patterns of sleeveless top and sports leggings were constructed. The performance of cool touch was tested by the Qmax value and wear test with nine subjects. Objective fit evaluation was observed by 3D virtual clothing using Clo software. Subjects rated wearing sensation such as 'cooling sensation, fit, wear comfort and preferences of purchase' using Likert's scale in the environmental chamber at $25^{\circ}C$, 45 %RH. The Qmax value of the cool touch fabric was higher than that of the PET fabric, which was well reflected in 'cooling sensation', especially in the case of a tight-fitted 3D pattern. The cooling sensation of the cool-touch fabric was not significantly elevated with 3D tight pattern as long as the size of the 2D pattern was similar to that of 3D pattern. However, the purchase preference was highly correlated with 3D fit and wear comfort.

Permissible Safety Limits in Local Cooling Focused on the Parts of Human Body (신체 부위별 냉각허용한계온도에 관한 연구)

  • Hwang, Kyoung-Sook;Choi, Jeong-Wha;Kim, Kyung-Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.1 s.160
    • /
    • pp.119-130
    • /
    • 2007
  • The objects of this study were to investigate responses and peculiarity during local cooling by parts of the human body and to show permissible safety limits without injurious to his health because of excessive cooling when he works hot environments. It were measured rectal temperature, skin temperature, heart rate, total body weight loss, local sweat in back and thigh, clothing microclimate and subjective sensation on 8 subjects and cooling parts were head, neck, chest, abdomen, back, waist, hip, upper arm, forearm, hand, thigh, calf and foot. According to above-mentioned the first experiment, we chose permissible safety limits by parts of the human body for one hour. In the second experiment, it was showed permissible safety limits by parts which examined their safety about health through 4 hours cooling test on 3 subjects. The results are as follows: 1. As a result of the first experiment, we chose permissible safety limits by parts, as follows, head $25^{\circ}C$, neck $20^{\circ}C$, chest $27^{\circ}C$, abdomen $25^{\circ}C$, back $20^{\circ}C$, waist $20^{\circ}C$, upper arm $20^{\circ}C$, forearm $20^{\circ}C$, hand $23^{\circ}C$, thigh $20^{\circ}C$, calf $20^{\circ}C$ and foot $23^{\circ}C$ in $37^{\circ}C$, 50%R.H. environment for 1 hour. 2. As a result of the second experiment, cooling on these safety limits temperatures except chest didn't have a bad effect on health. So it was proved that right permissible safety limits of chest was $28^{\circ}C$. From these results, it has been suggested that skin temperature didn't fall below permissible safety limits when human body was to be cool by parts.

Thermal Characteristics of the Garment Air-layers by PCM Concentration Changes (상변화물질 농도변화에 따른 의복내 공기층의 열적 특성)

  • Yoo, Hwa-Sook;Lim, Ji-Hye;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.6
    • /
    • pp.991-998
    • /
    • 2008
  • This study is to determine the effects of PCM concentration on the temperature changes of the air layers of a garment when the environmental temperature changes. The selected PCM was Nonadecane and coated on cotton fabrics with PCM concentrations 10%, 20%, and 30%. The temperature changes of the air layers between fabrics were measured by Human-Clothing-Environment Simulator which measure a dynamic heat transfer. After stabilizing at $34^{\circ}C$ for 1 hour, the multi layered garment system were exposed to $5^{\circ}C$ or $10^{\circ}C$ for 30 minutes and then, exposed to $34^{\circ}C$ for 30minutes. The results like following could be obtained. When the environmental temperature changed high to low, temperature of the air layer increased by heating effect of PCM. In the contrast, when the environmental temperature changed low to high, the temperature increase of the air layer was delayed because of cooling effect by PCM. Also, the more concentration of PCM, the bigger the heating effect. Cooling effect showed more clearly at PCM concentration 20%. The temperature differences of the air layers between with PCM fabrics and with non-PCM fabrics were bigger at $10^{\circ}C$ than at $5^{\circ}C$. Consequently, though PCM has influenced on the temperature of the air layer by heating and cooling effect, those effects haven't shown in all layers equally. It was shown that the effect of PCM varied according to the layer in the case of multi layered garment system and heat gain as well as heat loss in the outermost layer had to be taken into account.