DOI QR코드

DOI QR Code

Thermal Characteristics of the Garment Air-layers by PCM Concentration Changes

상변화물질 농도변화에 따른 의복내 공기층의 열적 특성

  • Yoo, Hwa-Sook (Dept. of Clothing & Textiles, University of Ulsan) ;
  • Lim, Ji-Hye (Dept. of Clothing & Textiles, Yonsei University) ;
  • Kim, Eun-Ae (Dept. of Clothing & Textiles, Yonsei University)
  • Published : 2008.06.30

Abstract

This study is to determine the effects of PCM concentration on the temperature changes of the air layers of a garment when the environmental temperature changes. The selected PCM was Nonadecane and coated on cotton fabrics with PCM concentrations 10%, 20%, and 30%. The temperature changes of the air layers between fabrics were measured by Human-Clothing-Environment Simulator which measure a dynamic heat transfer. After stabilizing at $34^{\circ}C$ for 1 hour, the multi layered garment system were exposed to $5^{\circ}C$ or $10^{\circ}C$ for 30 minutes and then, exposed to $34^{\circ}C$ for 30minutes. The results like following could be obtained. When the environmental temperature changed high to low, temperature of the air layer increased by heating effect of PCM. In the contrast, when the environmental temperature changed low to high, the temperature increase of the air layer was delayed because of cooling effect by PCM. Also, the more concentration of PCM, the bigger the heating effect. Cooling effect showed more clearly at PCM concentration 20%. The temperature differences of the air layers between with PCM fabrics and with non-PCM fabrics were bigger at $10^{\circ}C$ than at $5^{\circ}C$. Consequently, though PCM has influenced on the temperature of the air layer by heating and cooling effect, those effects haven't shown in all layers equally. It was shown that the effect of PCM varied according to the layer in the case of multi layered garment system and heat gain as well as heat loss in the outermost layer had to be taken into account.

본 연구는 상변화물질의 농도가 의복내 공기충의 온도변화에 미치는 영향을 연구하고자 하였다. 상변화물질로는 노나데칸을 사용하였으며 농도는 아크릴 바인더 대비 10%, 20%, 30%로 조절하여 면직물에 코팅처리하였다. 동적 열전달 측정장치인 Human-Clothing-Environment Simulator을 사용하여 고온에서 저온 이동시 다시 고온이동시의 의복내 온도변화를 측정하였다. 외부 환경온도는 고온은 34도, 저온은 5도와 10도를 하였으며 먼저 34도에서 한시간 동안 컨디셔닝한 후에 5도 또는 10도에 30분 동안 노출시켜 의복내 온도변화를 측정하였고 다시 34도에 노출시켜 30분동안 의복내 공기층에서의 상변화물질의 열적거동을 살펴보았다. 그 결과 상변화물질처리된 직물로 이루어진 의복내 공기층은 고온에서 저온이동시 상변화물질의 발열효과로 인해 미처리 직물보다 높은 온도를 나타내었으며, 저온에서 고온이동시에는 흡열효과로 인해 미처리 직물보다 온도상승이 느리게 나타났다. 농도가 증가할수록 상변화물질에 의한 발열효과는 증가하는 것으로 나타났으며 흡열효과의 경우에는 20%에서 큰 변화를 갖는 것으로 나타났다. 농도변화에 따른 미처리와 처리직물 사이의 차이를 보면, 10%에서 20% 증가시에 나타난 차이가 20%에서 30% 농도변화시에 나타난 차이보다 크게 나타났다. PCM 처리된 모든 직물들이 상변화를 겪는 것은 아니었으며 직물층에 따라 상변화를 하였고 최외곽층의 경우에는 상변화물질에 의한 흡열발열현상외에도 외부로의 열손실을 겪기 때문에 이에 대한고찰이 있어야하는 것을 알 수 있었다.

Keywords

References

  1. Bendkowska, W. (2006). Intelligent textiles with PCMs. In H. Mattila (Ed.), Intelligent textiles and clothing (pp. 35-62). Cambridge : Woodhead Publishing Limited
  2. Choi, K., Cho, G., Kim, P., & Cho, C. (2004). Thermal storage/release and mechanical properties of phase change materials on ployester fabrics. Textile Res. Journal, 74(4), 292-296 https://doi.org/10.1177/004051750407400402
  3. Ghali, K, Ghaddar, N., Harathani, J., & Jones, B. (2004). Experimental and numerical investigation of the effect of phase change materials on clothing during periodic ventilation. Textile Res. Journal, 74(3), 205-214 https://doi.org/10.1177/004051750407400304
  4. Kim, E., Yoo, S., Shim, H., & Kim, J. (2003). Developing the man-clothing-environment simulator for dynamic heat and moisture properties of fabrics. Fibers and Polymers, 4(4), 1-10 https://doi.org/10.1007/BF02899322
  5. Li, Y. & Zhu, Q. (2004), A model of heat and moisture transfer in porous textiles with Phase change materials. Textile Res. Journal, 74(5), 447-457 https://doi.org/10.1177/004051750407400512
  6. Makinen, M. (2006). Introduction to phase change materials. In H. Mattila (Ed.), Intelligent textiles and clothing (pp. 21-33). Cambridge: Woodhead Publishing Limited
  7. McCullough, E. A. & Shim, H. (2006). The use of phase change materials in outdoor clothing. In H. Mattila (Ed.), Intelligent textiles and clothing (pp. 63-81). Cambridge: Woodhead Publishing Limited
  8. Pause, B. (1995). Development of heat and cold insulating membrane structures with phase change material. Journal of Coated Fabrics, 25, 59-68 https://doi.org/10.1177/152808379502500107
  9. Pause, B. (2003). Nonwoven protective garments with thermo-regulating properties. J. of Industrial Textiles, 33(2), 93-99 https://doi.org/10.1177/152808303038859
  10. Vigo, T. L. & Frost, C. M. (1982). Temperature sensitive hollow fibers containing phase change salts. Textile Res. Journal, 55(10), 633-637
  11. Vigo, T. L. & Frost, C. M. (1983). Temperature sensitive hollow fibers containing polyethylene glycols. J. Coated Fabrics, 12(4), 243-254 https://doi.org/10.1177/152808378301200405
  12. Vigo, T. L. & Frost, C. M. (1985). Temperature adaptable fabrics. Textile Res. Journal, 55(12), 737-743 https://doi.org/10.1177/004051758505501205
  13. Zhang, X., Wang, X., Tao, X., & Yick, K. (2006). Structures and properties of wet spun thermo-regulated polyacrylonitrile-vinylidene chloride fibers. Textile Res. Journal, 76(5), 351-359 https://doi.org/10.1177/0040517506061959