• Title/Summary/Keyword: Cooling part

Search Result 602, Processing Time 0.03 seconds

An Experimental Study on Performance Characteristic of 30RT Closed-Type Hybrid Cooling Tower using Bare Tube (베어관을 이용한 30RT급 하이브리드 밀폐형 냉각탑의 성능특성에 관한 실험적 연구)

  • Jun, Chul-Ho;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1096-1101
    • /
    • 2005
  • In this study, the experiment of thermal performance about closed-type hybrid cooling tower was conducted. A closed type cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water flows gravitational direction in the outer side of it. Air contacts of tube outer side are counterflow. The heat transfer pipe used in this experiment is a bare type tube having an outside diameter of 15.88mm. In this experiment, heat performances of the cooling tower are calculated such as overall heat transfer coefficient of between the process fluid and air, cooing capacity and pressure drop.

  • PDF

Performance Characteristics of the Desiccant Cooling System in Various Outdoor and Load Conditions (외기조건에 따른 제습냉방시스템의 성능 특성)

  • Lee, Dae-Young;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.623-628
    • /
    • 2009
  • Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.

  • PDF

Optimization of the Thermal Behavior of Linear Motors with High Speed and Force ($2^{nd}$ Paper) (고속.대추력 리니어모터의 열특성 최적화 [2])

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.163-170
    • /
    • 2002
  • This paper presents some measures far the optimization of the thermal behavior of linear motors, which are used as a high speed feed mechanism in machine tools. Thermo-Sandwich-Construction using two cooling circuits and an insulation layer shows an effective cooling system for linear motors. Conducting sheet can be also used to reduce heat flow from linear motor to machine table. Cooling pipe is a simple and effective cooling system for the secondary part of synchronous linear motor. Through the combination of the Thermo-Sandwich-Construction, conducting sheet and cooling pipe the thermally optimized linear motor shows a well improved thermal behavior in comparison with the prototype motor.

Study on Validity of Pre-cooling System for Hydrogen Gas Using Cryocooler Part II: CFD Simulation (극저온 냉동기를 활용한 기체 수소 예냉 시스템 검증에 관한 연구 Part II: CFD 시뮬레이션)

  • YOUNG MIN SEO;HYUN WOO NOH;DONG WOO HA;TAE HYUNG KOO;ROCK KIL KO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.439-446
    • /
    • 2023
  • In this study, the computational fluid dynamics (CFD) simulations were conducted to verify the cooling capacity of the cryocooler used for pre-cooling of hydrogen gas. Based on the experimental results, the effect of the flow rate on a copper pipe attached to the bottom of the cryocooler was investigated. In this study, the temperature data was calculated through the change of boundary condition for heat flux in the copper pipe. In addition, the cooling capacity of the cryocooler for pre-cooling hydrogen gas was considered by calculating the cooling temperature according to the flow rate in the certified operating range. Consequently the pre-cooing system for hydrogen gas was validated with a reasonable accuracy through CFD simulations.

The Effect of the Metallic Mold Cooling System on the Solidification Structures and the Mechanical Properties for Al-10%Si Alloy Castings (금형주조한 Al-10%Si합금의 응고조직과 기계적 성질에 미치는 금형의 냉각효과에 관한 연구)

  • Lee, Dong-Youn;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.2
    • /
    • pp.155-162
    • /
    • 1993
  • This study has been focused on the influence of the metallic mold cooling effects on the solidification structures and the mechanical properties for Al-10%Si alloy castings by the variation of pouring temperatures, metallic mold temperatures and Cooling part of metallic mold. The dendrite arm spacing of Al-10%Si alloy was decreased with increasing cooling rate. In case of bottom cooling of metallic mold, DAS was appeared to be $20-22{\mu}m$ and in the middle cooling, it was increased to $36-40{\mu}m$. The DAS decreased proportionally $with(cooling\;rate)^{-3/2}$ at pouring temperatures $680^{\circ}C$ and $(cooling\;rate)^{-1/2}$ at pouring temperature $760^{\circ}C$, but it was proportionally increased to $(local\;solidification\;time)^{1/2-1/3}$ at pouring temperature $680^{\circ}C$ and $760^{\circ}C$. The maximum tensile strength of Al-10%Si alloy casting was obtained in case of bottom cooling of mold at pouring temperature $680^{\circ}C$ and metallic mold temperature $320^{\circ}C$.

  • PDF

A Study on the Heat Transfer Analysis based on Insulation Thickness Variation of Cable Splice Part (지중케이블 접속부의 절연층 두께변화에 따른 열해석 연구)

  • 최규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.246-255
    • /
    • 1998
  • The cable cooling through installing the cooling pipe along the transmission cable becomes universal in foreign leading countries, especially in Japan, and, there are so many study results inside and outside of the country. However, the remarkable study result for cooling method of cable splice part is not achieved in spite of its importance. This paper is, therefore, carrys out detailed heat transfer analysis of existing 154kV underground cable-splice, depending on the insulation thickness variation when it is installed in manhole of tunnel whose temperature is maintained as $10^{\circ}C$ using refrigerator. This paper study also the cooling method of underground cable splice based on this result.

  • PDF

Comparisons of performance and operation characteristics for closed- and open-loop passive containment cooling system design

  • Bang, Jungjin;Jerng, Dong-Wook;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2499-2508
    • /
    • 2021
  • Passive containment cooling systems (PCCSs) have been actively studied to improve the inherent safety of nuclear power plants. Hered, we present two concepts, open-loop PCCS (OL-PCCS) and closed-loop PCCS (CL-PCCS), applicable to the PWR with a concrete-type containment. We analyzed the heat-removal performance and flow instability of these PCCS concepts using the GOTHIC code. In both cases, PCCS performance improved when a passive containment cooling heat exchanger (PCCX) was installed in the lower part of the containment building. The OL-PCCS was found to be superior in terms of heat-removal performance. However, in terms of flow instability, the OL-PCCS was more vulnerable than the CL-PCCS. In particular, the possibility of flow instability was higher when the PCCX was installed in the upper part of the containment. Therefore, the installation location of the OL-PCCS should be restricted to minimize flow instability. Conversely, a CL-PCCS can be installed without any positional restriction by adjusting the initial system pressure within the loop, which eliminates flow instability. These results could be used as base data for the thermo-hydraulic evaluation of PCCS in PWR with a large dry concrete-type containment.

A STUDY OF WARPAGE IN ONE WAY LONG PARTS (한 방향으로 긴 제품에 대한 변형연구)

  • Kim, Jong-Kab;Cho, Chae-Sung;Park, Sang-Deuck
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.741-744
    • /
    • 2000
  • In general there occur warpage in one way long part. Warpage is caused by differential shrinkage-Orientation Effect, Volumetric Shrinkage Effect, Differential Cooling Effect -over the part. Deco-Top is located at the top of 29"TV set and it's shape is one way long$(626{\times}130mm)$. Material is used transparency ABS resin. So we can't design ribs in this part. And we use film gate to avoid weld line. In these reasons we must develop no ribs and no warpage product. In this study we use MOLDFLOW's software-MF/FLOW, MF/COOL, MF/WARP. Using MF/FLOW, set the flow balance and gate positioning. And we can set cooling channel layout and the optimum processing condition through MF/COOL and MF/WARP. In result we reduced trials and obtained good product.

  • PDF

Liquid Cooling System Using Planar ECF Pump for Electronic Devices (평면형 ECF 펌프를 이용한 전자기기 액체냉각 시스템)

  • Seo, Woo-Suk;Ham, Young-Bog;Park, Jung-Ho;Yun, So-Nam;Yang, Soon-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.95-103
    • /
    • 2007
  • This paper presents a liquid cooling concept for heat rejection of high power electronic devices existing in notebook computers etc. The design, fabrication, and performance of the planar ECF pump and farced-liquid cooling system are summarized. The electro-conjugate fluid (ECF) is a kind of dielectric and functional fluids, which generates jet flows (ECF-jets) by applying static electric field through a pair of rod-like electrodes. The ECF-jet directly acts on the working fluid, so the proposed planar ECF pump needs no moving part, produces no vibration and noise. The planar ECF pump, consists of a pump housing and electrode substrate, achieves maximum flow rate and output pressure of $5.5\;cm^3/s$ and 7.2 kPa, respectively, at an applied voltage of 2.0 kV. The farced-liquid cooling system, constructed with the planar ECF pump, liquid-cooled heat sink and thermal test chip, removes input power up to 80 W keeping the chip surface temperature below $70\;^{\circ}C$. The experimental results demonstrate that the feasibility of forced-liquid cooling system using ECF is confirmed as an advanced cooling solution on the next-generation high power electronic devices.

Experimental Study on Cooling Characteristics of Multi - Air Conditioner using Inverter Scroll Compressor (인버터 스크롤 압축기를 사용한 멀티 에어컨의 냉방 특성에 대한 실험적 연구)

  • 권영철;고국원;진의선;허삼행;전용호;이영덕;박인규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 2004
  • In the present study, the cooling characteristics of the multi-air conditioner (A/C) using an inverter scroll compressor are experimentally investigated for the number of the indoor units and the operating conditions (2$0^{\circ}C$, 24$^{\circ}C$, 26$^{\circ}C$) under the cooling standard conditions by KS C 9306. In the case of the simultaneous operation for 3 indoor units, the cooling capacity, the mass flow rate and the input power have a decreasing trend and COP has an increasing trend, with decreasing the difference in the operating temperature of the indoor unit and the room temperature. In the case of the simultaneous operation for 2 indoor units, the COP of the indoor unit with large cooling capacity is high when the operating temperature is high, but the COP of the indoor unit with low cooling capacity is high when the operating temperature is low. In the case of the single operation for one unit, when the large cooling capacity of the indoor unit is less than 50% the compressor operates at the minimum operation frequency region and the COP decreases.