• 제목/요약/키워드: Cooling modes

검색결과 92건 처리시간 0.038초

Analysis of steam generator tube rupture accidents for the development of mitigation strategies

  • Bang, Jungjin;Choi, Gi Hyeon;Jerng, Dong-Wook;Bae, Sung-Won;Jang, Sunghyon;Ha, Sang Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.152-161
    • /
    • 2022
  • We analyzed mitigation strategies for steam generator tube rupture (SGTR) accidents using MARS code under both full-power and low-power and shutdown (LPSD) conditions. In general, there are two approaches to mitigating SGTR accidents: supplementing the reactor coolant inventory using safety injection systems and depressurizing the reactor coolant system (RCS) by cooling it down using the intact steam generator. These mitigation strategies were compared from the viewpoint of break flow from the ruptured steam generator tube, the core integrity, and the possibility of the main steam safety valves opening, which is associated with the potential release of radiation. The "cooldown strategy" is recommended for break flow control, whereas the "RCS make-up strategy" is better for RCS inventory control. Under full power, neither mitigation strategy made a significant difference except for on the break flow while, in LPSD modes, the RCS cooldown strategy resulted in lower break and discharge flows, and thus less radiation release. As a result, using the cooldown strategy for an SGTR under LPSD conditions is recommended. These results can be used as a fundamental guide for mitigation strategies for SGTR accidents according to the operational mode.

Validation of a New Design of Tellurium Dioxide-Irradiated Target

  • Fllaoui, Aziz;Ghamad, Younes;Zoubir, Brahim;Ayaz, Zinel Abidine;Morabiti, Aissam El;Amayoud, Hafid;Chakir, El Mahjoub
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1273-1279
    • /
    • 2016
  • Production of iodine-131 by neutron activation of tellurium in tellurium dioxide ($TeO_2$) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gaswelding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ${\leq}10^{-4}mbr.L/s$, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to $600^{\circ}C$ with the appearance of deformations on lids beyond $450^{\circ}C$. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from4 hours of irradiation at a power level of 0.5MWup to 35 hours (7 h/d for 5 days a week) at 1.5MW. The results showthat the irradiated targets are tight because no iodine-131 was released in the atmosphere of the reactor building and in the reactor cooling water of the primary circuit.

습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구 (Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission)

  • 김우정;이상호;장시열
    • Tribology and Lubricants
    • /
    • 제33권3호
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.

우즈베키스탄 Maidanak 천문대 Fairchild 486 CCD의 기본적인 특성 (CHARACTERISTICS OF THE FAIRCHILD 486 CCD AT MAIDANAK ASTRONOMICAL OBSERVATORY IN UZBEKISTAN)

  • 임범두;성환경
    • 천문학논총
    • /
    • 제23권1호
    • /
    • pp.1-12
    • /
    • 2008
  • Understanding of the basic characteristics of an astronomical instrument is a prerequisite to obtaining reliable data from the instrument. We have analyzed more than 1,000 calibration images from the Fairchild 486 CCD (hereafter the Maidanak 4k CCD system) attached to the AZT-22 1.5m telescope at Maidanak Astronomical Observatory in Uzbekistan. The Maidanak 4k CCD system supports three readout modes through 1, 2, or 4 amplifiers. In most cases observers use 4-amplifier readout mode to save time. We have tested the stability and seasonal variation of zero levels and confirm that two quadrants of the images (Amp 1 & 2) show no appreciable seasonal variation. but the other two quadrants (Amp 3 & Amp 4) show an evident seasonal variation in the bias level. The Cryo Tiger, the cooling system used at the Maidanak 4k CCD system, maintains the CCD temperature at -108'E, and effectively suppresses the dark electrons. The mean value versus the variance plot of the flat images does not show the expected relation for an ideal Poisson noise distribution and this is attributed to the large variation in quantum efficiency between different pixels. In addition, we confirm that there is no appreciable difference in gain between readout amplifiers, but there is a large variation in quantum efficiency across CCD chip especially in U. Due to the finite length of shutter opening and closing time, the effective exposure time varies across the science images. We introduce two parameters to quantify the effect of this uneven illumination and present a method to remove these effects. We also present a method to remove the interference patterns appearing in the images obtained with longer wavelength filters and investigate the spatial variation of the point spread function.

인장전단시험을 이용한 TRIP1180강의 계면파단특성 평가 (Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 1180 Steels)

  • 박상순;최영민;남대근;김영석;유지훈;박영도
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.81-91
    • /
    • 2008
  • The weldability of resistance spot welding of TRIP1180 steels for automobile components investigated enhance in order to achieve understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP1180 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the spot welded samples, the load-carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface also, dimple fracture areas were drawmatically increased with heat input which is propotional to the applied weld current. In spite of the high hardness values associated with the martensite microstructures due to high cooling rate. The high load-carrying ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP1180 steels, the load-carrying capacity of the weld should be considered as an important factor than fracture mode.

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

  • Kim, Hyeong-Mook;Park, Jaeheung;Noh, Hee Chang;Lim, Manho;Chung, Young Keun;Kang, Youn K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.587-596
    • /
    • 2014
  • A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

군집화 기반 정상상태 식별을 활용한 시스템 에어컨의 냉매 충전량 분류 모델 개발 (Development of Classification Model on SAC Refrigerant Charge Level Using Clustering-based Steady-state Identification)

  • 김재희;노유정;정종환;최봉수;장석훈
    • 한국전산구조공학회논문집
    • /
    • 제35권6호
    • /
    • pp.357-365
    • /
    • 2022
  • 냉매 오충전은 에어컨에서 빈번하게 발생하는 고장 모드 중 하나로, 적정 충전량 대비 부족 및 과충전 모두 냉방 성능의 저하를 유발하므로 충전된 냉매량을 정확하게 판단하는 것이 중요하다. 본 연구에서는 퍼지 군집화 기법을 통한 정상상태 식별을 통해 냉매 오충전량을 다중 분류하는 모델을 개발하였다. 정상상태 식별을 위해 에어컨 운전 데이터에 대해 이동 평균 간의 차이를 활용한 퍼지 군집화 알고리즘을 적용하였으며, IFDR를 통해 기존 연구된 정상상태 판단 기법들과 식별 결과를 비교하였다. 이후, 시스템 내 상관성을 고려한 mRMR을 이용해 특징을 선택하였으며, 도출된 특징을 이용해 SVM 기반의 다중 분류 모델이 생성되었다. 제안된 방법은 시험 데이터를 통해 만족할 만한 분류 정확도와 강건성을 도출하였다.

설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008)

  • 한화택;최창호;이대영;김서영;권용일;최종민
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

터빈 익렬 주위에서의 부유입자 유동 및 마모량 해석 (Analysis of Particle Laden Flow and Erosion Rate Around Turbine Cascade)

  • 김완식;조형희
    • 한국추진공학회지
    • /
    • 제2권2호
    • /
    • pp.14-23
    • /
    • 1998
  • 본 연구에서는 제트 추진 기관의 터빈 익렬에서의 유동과 대기중에 부유되어 있는 입자들이 제트엔진 내부로 유입될 경우 이에 따른 압축기 날개의 마모 및 충돌 부위를 예측하기 위하여 수치해석을 수행하였다. 일반적으로 각종 항공기의 추진 기관용 가스 터빈 엔진은 대기중에 부유되어 있는 각종 입자들의 영향을 받게 된다. 특히, 화산 지역, 먼지 입자 부유물이 많은 공업지대 또는 사막지역을 비행하는 항공기의 경우는 모래 알갱이, 먼지, 및 연소 입자의 직접적인 영향을 받아 각 요소들에 심각한 부식 및 마모가 발생됨으로써 성능 저하 및 냉각통로의 막힘, 압축기와 터빈 날개의 손상 등이 예측되어 진다. 이러한 손상들은 초기에는 미세하게 발생하지만, 손상 정도가 점점 누적됨에 따라서 항공기의 안전 운전에 심각한 위험 요소로서 작용할 수 있으며, 경제적으로도 기관의 유지 보수비용의 증가를 가져 올 수 있다. 따라서 압축기에 화산재 또는 대기중에 부유되어 있는 금속 입자나 먼지 입자 등이 유입되었을 경우, 압축기 날개의 손상 부위와 정도를 예측하는 것이 필요하다. 따라서 본 연구에서는 다양한 입자의 유입각에서 라그랑지안 방법을 적용하여 압축기 날개 유로로 부유된 입자의 궤적을 예측하고 입자의 충돌에 의한 충격량을 계산하였다. 아울러 정량적인 충돌량을 해석하기 위하여 입자 충돌 계수를 정의하여 압축기 날개 표면의 충돌특성을 해석하였다. 세라믹과 연강에 대한 날개 표면의 마모량을 계산하였으며, 이러한 예측들을 통하여 표면에의 코팅 등의 개선책을 찾을 수 있었다.

  • PDF

외부 흐름과 준설된 다열 함몰지형에 의한 파랑의 반사 (Water wave reflection over shear currents and dredged multi-arrayed trenches)

  • 조용식;이광준;이준환
    • 한국수자원학회논문집
    • /
    • 제53권10호
    • /
    • pp.871-876
    • /
    • 2020
  • 임해발전소의 냉각수 배출구 인근과 준설된 해역을 전파하는 파랑의 특성을 이해하는 것은 임해발전소 건설과 운영에 매우 중요하다. 본 연구에서는 (1) 배출구 주변 외부 흐름과 (2) 준설된 해저지형을 나타내는 함몰지형에 의한 파랑의 반사율을 고유함수전개법을 이용하여 해석하였다. 먼저, 외부흐름을 나타내기 위한 격자수와 소멸파수의 최적값을 수렴 테스트를 통해 산정하였다. 그리고 1)외부흐름의 속도, 2)외부흐름의 폭, 3)함몰지형 간 거리, 4)함몰지형의 개수에 따른 반사율 변화 정도를 분석하였다. 분석결과, 함몰지형 수와 거리에 따른 반사율이 외부흐름의 속도와 폭에 따른 반사율보다 더 민감한 결과를 보였다. 또한, 외부흐름의 영향이 작을지라도 천해와 천해부근 상대수심 (0.01 < kh ≦ 0.70)에서는 외부흐름의 영향을 무시할 수 없다는 것을 확인하였다.