• 제목/요약/키워드: Cooling impact

검색결과 274건 처리시간 0.03초

Comparative study on the effect of cooling & heating loads by lighting energy of various light sources in an office building

  • Hong, Won Pyo
    • 조명전기설비학회논문지
    • /
    • 제30권3호
    • /
    • pp.94-105
    • /
    • 2016
  • The objective of the work was to evaluate the impact of lighting energy to cooling and heating consumption in medium scale office building, when currently installed fluorescent lights were replaced with various LED lighting fixtures. This evaluation comes from an integrated approach combining the proper indoor lighting environment and the thermal aspects of cooling & heating consumption in office building. These simulations were performed by coupling an appropriate luminaire analysis for energy consumption and a dynamic thermal simulation software (TRNSYS). To analyze comparative study of effects on the heating, cooling loads, and energy consumption of an LED lamp application, 2 types of LED lamp with low light power watt(LPW) 24W and high LPW 7.5W and a fluorescent lights(FL) with 37W are used respectively. Integrated building energy consumption decreased up to 3.2% when fluorescent lamps were replaced with LEDs. Thus, the high LPW of LED(7.5W) replaced with the same number of FL shows an effective energy saving and cost- effective luminary.

제어압연${\cdot}$제어냉각기술을 이용한 고강도 냉간성형용 비조질강의 개발 (Development of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology)

  • 김남규;박상덕;김병옥;최회진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2005
  • The main purpose of the present study has been placed on investigating the effects of controlled rolling and cooling on the microstructures and mechanical properties of C-Si-Mn-V steels for cold forming. The steels were manufactured in vacuum induction melting(VIM) furnace and casted to 1.1ton Ingots and the ingots were forged to $\Box150$ billet. The forged billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of $27\%$ of area reduction without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that mechanical properties and microstructure of C-Si-Mn-V steels for cold forming were enhanced by accelerated cooling and founded optimum level of cold drawing.

  • PDF

Low-grade waste heat recovery and repurposing to reduce the load on cooling towers

  • McLean, Shannon H.;Chenier, Jeff;Muinonen, Sari;Laamanen, Corey A.;Scott, John A.
    • Advances in Energy Research
    • /
    • 제7권2호
    • /
    • pp.147-166
    • /
    • 2020
  • Industrial cooling towers are often ageing infrastructure that is expensive to maintain and operate. A novel approach is introduced in which a heat pump circuit is incorporated to reduce the load upon the towers by extracting low-grade energy from the stream sent to the towers and repurposing in on-site processing operations. To demonstrate the concept, a model was constructed, which uses industrial data on cooling towers linked to a smelter's sulphuric acid plant, to allow direct economic and environmental impact comparison between different heat recovery and repurposing scenarios. The model's results showed that implementing a heat pump system would significantly decrease annual operating costs and achieve a payback period of 3 years. In addition, overall CO2 emissions could be reduced by 42% (430,000 kg/year) and a 5% heat load reduction on the cooling towers achieved. The concept is significant as the outcomes introduce a new way for energy intensive industrial sectors, such as mineral processing, to reduce energy consumption and improve long-term sustainable performance.

Development of risk assessment framework and the case study for a spent fuel pool of a nuclear power plant

  • Choi, Jintae;Seok, Ho
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1127-1133
    • /
    • 2021
  • A Spent Fuel Pool (SFP) is designed to store spent fuel assemblies in the pool. And, a SFP cooling and cleanup system cools the SFP coolant through a heat exchanger which exchanges heat with component cooling water. If the cooling system fails or interfacing pipe (e.g., suction or discharge pipe) breaks, the cooling function may be lost, probably leading to fuel damage. In order to prevent such an incident, it is required to properly cool the spent fuel assemblies in the SFP by either recovering the cooling system or injecting water into the SFP. Probabilistic safety assessment (PSA) is a good tool to assess the SFP risk when an initiating event for the SFP occurs. Since PSA has been focused on reactor-side so far, it is required to study on the framework of PSA approach for SFP and identify the key factors in terms of fuel damage frequency (FDF) through a case study. In this study, therefore, a case study of SFP-PSA on the basis of design information of APR-1400 has been conducted quantitatively, and several sensitivity analyses have been conducted to understand the impact of the key factors on FDF.

미시적 열섬현상 저감을 위한 도시 가로수 식재 시나리오별 분석 - 서울시를 대상으로 - (Urban Street Planting Scenarios Simulation for Micro-scale Urban Heat Island Effect Mitigation in Seoul)

  • 권유진;이동근;안새결
    • 환경영향평가
    • /
    • 제28권1호
    • /
    • pp.23-34
    • /
    • 2019
  • 지구온난화는 해수면 상승이나 전 세계의 변덕스러운 기후와 같은 심각하면서 부차적인 문제를 야기한다. 2015년 여름에 심각한 폭염이 있은 이래로, 도시열섬에 대한 큰 관심이 모아졌다. 폭염 자체에 대한 연구뿐만이 아니라, 많은 연구가 온난화된 기후와 미시 기후에 적응하는 방법에 중점을 둔다. 기존 연구들의 상당부분은 도시열섬 효과를 완화하는 것인데, 이는 다양한 활동을 하고 있는 인구가 많은 도시 지역에 거대한 불침투성 표면이 존재하고 있기 때문이다. 또한 이 열 환경이 열 취약성에 의한 사망을 초래할 가능성이 높다는 것은 심각한 문제이다. 여름철 그린인프라의 냉각효과에 대한 논문이 많이 있어왔지만, 본 연구는 도시 협곡과 인접한 그린인프라 유형을 고려하여 가로수의 냉각 효과를 측정하는 데에 집중했다. 이 정량적 접근은 ENVI-met 시뮬레이션을 통해 서울의 상업지역 블록에서 진행되었다. 연구결과로 밀도가 높은 2열 식재가 단열식재보다 온도 변화에 더 민감하다는 것을 발견했다. 2열 식재 시나리오 중 가로수와 지표면 사이의 공간이 좁은 관목은 주간에 열을 저장하여 야간에 저장열 방출을 막아 더 높은 온도를 유지하는 것으로 밝혀졌다. 식생 공간의 냉각 효과를 정량화하면 미래의 비용 및 편익 평가 연구에 기여할 것으로 기대된다.

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.

Effects of Injection Molding Parameters and their Interactions on Mechanical Properties of PMMA/PC Blend

  • Hoang, Van Thanh;Luu, Duc Binh;Toan Do, Le Hung;Tran, Ngoc Hai;Nguyen, Pham The Nhan;Tran, Minh Sang;Tran, Minh Thong
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.650-654
    • /
    • 2020
  • A combination of Polycarbonate (PC) material and Polymethylmethacrylate (PMMA), fabricated using an injection molding machine, has been investigated to determine its advantages, as studied in Ref. 1). This paper aims to investigate the optimization of PMMA/PC blend for both tensile yield strength and impact strength. Furthermore, interaction effects of process conditions on mechanical properties including tensile yield strength and impact strength of PMMA/PC blend by injection molding process are interpreted in this study. Tensile and impact specimens are designed following ASTM, type V, and are fabricated by injection molding process. The processing conditions such as melt temperature, mold temperature, packing pressure, and cooling time are applied; each factor has three levels. As a result, in comparison with optimization of separated responses, mechanical properties of PMMA/PC are found to decrease when optimizing both tensile and impact strengths simultaneously. The melt temperature is found to be the most significant interaction parameter with the mold temperature and packing pressure. In addition, there is more interaction between the mold temperature and cooling time. This investigation provides a useful understanding of the control of injection molding processing of polymer blends in optical application.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Analysis of Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in Turning Operation for Environmentally Conscious Machining(II)

  • Hwang Joan;Hwang Duk-Chul;Chung Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.3-7
    • /
    • 2005
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling and lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor. Cutting fluid's aerosol via atomization process can generate human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol of which particle size less than 10 micron appears near working zone under typical operation conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided as a basis of environmental impact analysis for environmental consciousness.

환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(II) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(II))

  • 황준;정의식;황덕철
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.50-57
    • /
    • 2003
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling, Lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor Cutting fluid's aerosol via atomization process can be affected human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working tone under typical operational conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided a basis of environmental impact analysis fur environmental consciousness.