• 제목/요약/키워드: Cooling heat transfer

검색결과 1,358건 처리시간 0.03초

엔진 냉각 시스템 개선에 관한 연구 (A Study on Improvement of Engine Cooling System)

  • 김문헌;오병욱
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.103-116
    • /
    • 1994
  • In this study the behavior of engine cooling loss and overall heat transfer coefficient were studied experimentally using naturally aspirated engine and turbo charged engine. Using turbo charging, heat dissipation was increased because of the density of the mixture was increased with increment of inlet air flow rate. Therefore, cooling loss of turbo charged engine is larger than naturally aspirated engine. As taking the measurement of surface temperature of combustion chamber, gas heat transfer coefficient was calculated and found that it has greatly affected to overall heat transfer coefficient. The empirical formula of overall heat transfer coefficient established in order to predict of engine cooling loss and express only as a function of mean piston velocity.

  • PDF

Bloom 연주기의 최적 냉각조건 도출을 위한 응고 시뮬레이션 (Solidification Simulation for Optimal Cooling of Bloom Type Continuous Casting Machine)

  • 정영진;김영모;조기현;강충길
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1629-1636
    • /
    • 2004
  • The continuous casting is primarily a heat-extraction process in which the heat transfer at various cooling zones profoundly influences quality of products. So development of numerical model is necessarily needed for more specific and clear investigations upon heat transfer mechanism at mold and secondary cooling zones. In this study, heat transfer coefficients which show the characteristic of heat transfer mechanism in mold are calculated for more exact analysis with temperature measured in bloom mold using optimal algorithm, and finally the validity of cooling conditions at secondary cooling zone actually used at field fur 30 Ton bloom type continuous casting of 0.187%C is investigated. From the results of solidification analysis, the characteristic of bloom mold shows a similar tendency with that of previous studies, and optimized cooling conditions for 0.187%C are presented.

고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석 (Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section)

  • 이강엽;김형모;한영민;이수용
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

압전 액츄에이터를 이용한 열전냉각 시스템 성능 향상에 관한 연구 (A Study on Enhancement of Thermoelectric Cooling System Performance by Piezoelectric Actuator)

  • 양호동;윤희성;오율권
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.13-19
    • /
    • 2009
  • The thermoelectric cooling system consisted of the thermoelectric module, a heat sink and a cooling fan, respectively. Also, the piezoelectric actuator was applied to improve the performance of thermoelectric cooling system and investigate the heat transfer phenomenon. The temperature distribution of test section was measured to investigate cooling characteristics of thermoelectric cooling system. The flow phenomenon of test section was visualized using visualization device. When the piezoelectric actuator was applied to the heat transfer process of thermoelectric cooling system, acoustic streaming was occurred in test section. The acoustic streaming was occurred forced convection flow, and was regularly formed the temperature distribution in test section. The results clearly show that the acoustic streaming is one of the prime effects to enhance the convection heat transfer and can enhance the performance of thermoelectric cooling system.

돌출된 열원이 있는 채널에서 대류와 전도열전달을 이용한 냉각특성 (Cooling Characteristics of a Parallel Channel with Protruding Heat Sources Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.923-930
    • /
    • 2002
  • Cooling characteristics of a parallel channel with protruding heat sources using convection and conduction heat transfer are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve the problem. The assembly consists of two channels formed by two covers and one printed circuit board which has three uniform heat source blocks. Six different cooling methods are considered to find out the most efficient cooling method in a given geometry and heat sources. The velocity and temperature fields of cooling medium, the temperature distribution along the block surface, and the maximum temperature in each block are obtained. The results are compared to examine the cooling characteristics of the different cooling methods.

초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석 (A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor)

  • 김태균;허남건;정시영;전승배
    • 한국유체기계학회 논문집
    • /
    • 제4권1호
    • /
    • pp.14-21
    • /
    • 2001
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions are analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis, a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system are analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석 (A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor)

  • 김태균;허남건;정시영;전승배
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.351-358
    • /
    • 2000
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions were analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system were analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

경사면에서의 분무냉각 막비등 열전달에 관한 실험적 연구 (Experimental Study on Film Boiling Heat Transfer of Spray Cooling for Inclined heat transfer Surface)

  • 김영찬
    • 설비공학논문집
    • /
    • 제22권1호
    • /
    • pp.33-39
    • /
    • 2010
  • The film boiling heat transfer was experimentally investigated for the water sprays impacting on an inclined hot surface. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made for different inclination angles of $\theta=0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$. The experimental results show that, in the downstream region of the inclined hot surface, increasing the inclination angle increases the local heat flux slowly because of increasing the number of rebound droplets. However, the inclination angle of heat transfer surface had no remarkable effect on the local heat flux of spray cooling under the present test conditions.

공랭형 수직평판 흡수기 액막에서의 열 및 물질전달에 관한 수치적 연구 (A Numerical Study on Heat and Mass Transfer in a Falling Film of Vertical Plate Absorber Cooled by Air)

  • 김선창;오명도;이재헌
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1071-1082
    • /
    • 1995
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of the LiBr aqueous solution which is cooled by cooling air. Heat flux at the wall is specified in terms of the heat transfer coefficient of cooling air and the cooling air temperature. Effects of operating conditions, such as the heat transfer coefficient, the cooling air temperature, the system pressure and the solution inlet concentration have been investigated in view of the local absorption mass flux and the total mass transfer rate. Effects of film thickness and film Reynolds number on the heat and mass transfer coefficients have been also estimated. Analyses for the constant wall temperature condition have been also carried out to examine the reliability of present numerical method by comparing with previous investigations.

자동차용 엔진 냉각시스템의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Automotive Engine Cooling Control System)

  • 박경석;원종필;정동화
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1183-1194
    • /
    • 1998
  • This paper describes a theoretical model developed for analyzing the heat transfer of automotive cooling systems. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through cylinder wall in engine cylinder was analyzed by using a two zone combustion model. This paper studied how cooling condition would affect engine heat release rate and measured temperature distribution of coolant in water jacket.