• Title/Summary/Keyword: Cooling fin

Search Result 186, Processing Time 0.023 seconds

Numerical Analysis of Heat Transfer of Aligned Wing Type Pin-Fin Array of Air Cooling Module with Various Fin Shapes for Electronic Packaging Application (날개형 핀-휜의 기하학적 형상이 전자기기 모듈 냉각용 공기냉각기의 유동 및 열전달에 미치는 영향)

  • Kim, Soo-Youn;Heo, Kyeon;Shin, Seok-Won
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.265-270
    • /
    • 2008
  • In this study, the flow and heat transfer of the aligned pin-fin array of the air cooling module for electronic packaging application were numerically analyzed with various fin shapes. The geometric cross-sectional shapes of pin-fins considered in this study were ellipse, wing and circle. The fins had same cross-sectional area and height, but they had different surface areas. As the results, the surface area, the heat transfer coefficient, and the heat transfer performance of pin-fins greatly depended on their shapes. Of the three types of pin-fins, the wing type pin-fin with suitable shape produced the best heat transfer performance. This result implies that the cooling capacity of the pin-fin cooler can be significantly enhanced only by the change of fin shape without increasing air flow-rate or fin density.

  • PDF

THE EFFECTS OF RADIAL HEAT SINK GEOMETRY AND SURFACE COATINGS ON THE LED COOLING PERFORMANCE FOR HIGH POWER LED LAMP (고출력 LED 램프 용 방사형 히트싱크의 형상 및 표면코팅이 LED 냉각성능에 미치는 영향에 대한 연구)

  • Kim, H.S.;Park, S.H.;Kim, D.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • The purpose of this study is to investigate the cooling performance of radial heat sink used for high power LED lightings by natural convection cooling with surrounding air. Experimental and numerical analyses are carried out together. Parametric studies are performed to compare the effects of geometric parameters in radial heat sink such as the number of fins, fin height, fin length, and thickness of fin base as well as the surface coatings of radial heat sink. In this study, the cooling of 60 W LED lamp is examined with radiative heat transfer considered as well as natural convection. Numerical results show the optimum condition when the number of fin is 40, heat sink height is 120 mm, fin length is 15 mm, and fin base thickness is 3 mm. The difference in temperature of the LED metal PCB is within $1^{\circ}C$ between numerical analyses and experimental results. Also, the CNT coating on the heat sink surface is found to increase the cooling performance significantly.

The Study on the fin effect in PUre Zinc Casting (순아연주물응고(純亞鉛鑄物凝固)에 있어서 Fin 효과에 관한 연구(硏究))

  • Han, Yoon-Hee;Kim, Myung-Han;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.5 no.4
    • /
    • pp.289-297
    • /
    • 1985
  • Thin sections in castings solidify faster than thick sections. Solidification rates increase because of an increase in heat transfer from molten meltals to molds through these solidified thin sections. The cooling fin effect in pure zinc casting was studied about the solidification time, superheat, and fin size by adopting the pourout test. The following results could be obtained from the study: (1) The fin effect could be represented by the effective cooling surface area ($A_f/S$) increased. (2) The fin effect could be obtained as functions of solidification time, superheat, and fin size.

  • PDF

Experimental Study on Heat Transfer and Pressure Drop of Heat Exchangers for Cooling Fan Coil Unit (냉방용 팬코일 유닛 열교환기의 열전달 및 압력강하 특성 실험연구)

  • Kwon, Young-Chul;Ko, Kuk-Won;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.599-604
    • /
    • 2008
  • An experimental study has been performed to investigate the air-side capacity and pressure drop of the fin-tube heat exchanger for a fan coil unit under a cooling condition. The experimental data of five kinds of slit fin-tube heat exchangers were measured using an air-enthalpy calorimeter and a constant temperature water bath. Cooling capacities at the air and water rating flow rates were larger at the lower inlet water temperature. With increasing the water flow rate, the cooling capacity increased at the constant rate. Under the lower inlet water temperature, since the condensate was generated more on the fin-tube surface, the air-side pressure drop of the heat exchanger was larger.

Investigation of Cooling Performance of the Driving Motor Utilizing Heat Pipe (히트파이프를 부착한 구동모터의 냉각성능에 관한 연구)

  • Lee, Dong-Ryul
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.11-16
    • /
    • 2006
  • This research is to verify the cooling effect of the acting surface on the rotary motor using heat pipe and conventional cooling fan. In order to show the cooling performance of the rotary motor and heat pipe with the fin-typed heat sink, the surface temperature of the motor and condenser was measured in real time. The experiments were also conducted as for not only cooling device installed with heat pipe only, but with heat pipe and conventional cooling fan simultaneously. The present experiment reveals that the cooling combination of the heat pipe and cooling fan is far superior to the conventional cooling device for the driving motor such as the fin-typed heat sink. When the driving voltage of 20V and 14V were supplied to the driving motor, the cooling performance of the rotary motor with heat pipe was 170% and 500%, respectively better than that without heat pipe on steady state condition.

  • PDF

A Study on the Performance of the Condensation and the Boiling Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil (절삭유 냉각용 낮은 핀관의 응축 및 비등 열전달 성능에 관한 연구)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.68-78
    • /
    • 1999
  • Heat transfer performance is studied for boiling and condensation of R-11 on integral-fin tubes. Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64 mm height respectively are tested. in case of condensation CFC-11 condensates at saturation stat of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1 bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube,. The tube having fin transfer coefficient concerns fin tubes with caves show higher valve than low fin tube having find density of 1299fpm and 30grooves. The overall heat transfer coefficient of fin tube with caves is about 5155 W/mK at 2.8m/s of water velocity, The value is abuot 2.7 times higher than plain tube and 1.3 times higher than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

A Study on the Performance of the Condensation and the Boiling Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil (절삭유 냉각용 낮은 핀관의 응축 및 비등 열전달 성능에 관한 연구)

  • Jo, Dong Hyeon;Lee, Jong Seon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.65-65
    • /
    • 1999
  • Heat transfer performance is studied for boiling and condensation of R-11 on integral-fin tubes. Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64 mm height respectively are tested. in case of condensation CFC-11 condensates at saturation stat of 32℃ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1 bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube,. The tube having fin transfer coefficient concerns fin tubes with caves show higher valve than low fin tube having find density of 1299fpm and 30grooves. The overall heat transfer coefficient of fin tube with caves is about 5155 W/mK at 2.8m/s of water velocity, The value is abuot 2.7 times higher than plain tube and 1.3 times higher than low fin tube having fin density of 1299fpm and 30 grooves.

Enhancement of Heat Transfer in Internal Passage using Pin-Fin with Jet Hole and Complex Pin-Fin-Dimple Array (제트홀이 설치된 핀-휜 및 핀-휜/딤플 복합 배열을 사용한 내부유로에서의 열전달 향상)

  • Park, Jun Su
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • A Pin-fin array is widely used to enhance the heat transfer in the internal cooling passage. The heat transfer distribution around the pin-fin is varied by the horseshoe vortex and flow separation. The difference of heat transfer coefficient induces the large thermal stress, which is one of the major reasons to break of hot components. So, it is required to enhance the heat transfer on the back side of pin-fin to solve the thermal stress problem. This study suggests the pin-fin with inclined jet hole and complex pin-fin/dimple array to enhance the heat transfer on the back side of pin-fin. The heat transfer coefficient is predicted by the numerical analysis, which is performed by CFX 14.0. The numerical results are obtained at Reynolds number, 10,000. The results show that the heat transfer on the back side of pin-fin is increased in both cases. Beside, the wake, which comes from dimple and jet, helps to develop the horseshoe vortex and increase the heat transfer on the next row pin-fin.

Performance Evaluation of Heat Sink for Cooling of LED Projector (LED 프로젝터 방열용 히트싱크의 성능평가)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeon, Dong-Soon;Kim, Seon-Chang;Son, Kwang-Eun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1167-1171
    • /
    • 2008
  • The flow and thermal performance of the skiving and louver fin type heat sinks for the cooling system of the small LED projector were experimentally evaluated. A small fan tester based on AMCA standards was used to control and measure the air flow rate into the heat sink. Three heat blocks were used to simulate the heat and light sources(red, green and blue) of the small LED projector. We measured the pressure drop, temperatures and input power at the specific air flow rate and discussed those results. As a result, it is found that the louver fin type heat sink has higher pressure drop and lower thermal resistance than the skiving type. From the comparison of the temperature of the heat block between skiving and louver fin type, the louver fin type heat sink was found to be more suitable for cooling the high power heat source than skiving type. The thermal performance of the fan-sink(louver fin type) system was discussed with the picture taken by a thermal video.

  • PDF

Numerical Analysis on Cooling Characteristics of the Heat Sink for Amplifier (앰프용 히트싱크의 방열특성에 관한 해석적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.947-951
    • /
    • 2015
  • The objective of this study is to numerically investigate the cooling characteristics of the heat sink as a cooling device for the amplifier. In order to analyze the heat transfer performances of the heat sink, the steady-state thermal model of the ANSYS software was used and analyzed with the fin thickness, fin pitch and fin number of the heat sink. As a result, the temperature at the junction of heat sink was decreased with the increase of fin thickness and fin number. In addition, the thermal resistances of the heat sinks were enhanced from $0.764^{\circ}C/W$ to $0.739^{\circ}C/W$ and $1.254^{\circ}C/W$ to $0.610^{\circ}C/W$, respectively, with the increase of the fin thickness from 1 mm to 3 mm and fin number from 9 to 20, respectively.