• Title/Summary/Keyword: Cooling characteristics

Search Result 2,282, Processing Time 0.042 seconds

Cooling characteristics of a Liquid cooler Using Thermoeletric Module (열전소자를 이용한 액체 냉각기의 냉각열전달 특성)

  • Park, Min-Young;Lee, Geun-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.197-202
    • /
    • 2007
  • In this study, the cooling characteristics of a liquid cooler using thermoelectric module was experimentally investigated. The experiment was conducted for various inner structures of liquid cooler (4 cases), hot fluid flow rates (0.15-0.25 L/min), number of T.E module (2, 4, 6 set), and the cooling water flow rates (200-600 cc/min) for both parallel and counter flow types. Among the results, better cooling performance geometry was selected. And experiment was also carried out to examine further enhancement of cooling performance by inserting coils (pitches: 0.2, 3, 6 mm) into the hot-fluid channel. Present results showed that the short serpentine type(case2) indicated the best cooling performance. In the case of coil pitch of 3 mm, the best cooling performance was shown, more than 10% increase of the inlet and outlet temperature difference, compared with the case of the cooler without coil. Consequently, the inserted coil pitch should be properly selected to improve cooling performance.

  • PDF

Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling (분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, Yun-Je;Gwon, Dong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

Thermal Crack Characteristics of Concrete Walls with Pipe Cooling (파이프 쿨링 공법 적용에 따른 벽체구조물의 온도균열 특성)

  • 박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper reports the performance results of hydration heat control of mass concrete walls with pipe cooling system. The thickness of walls ranged from 0.9 to 2.2m. In order to investigate the effect of pipe cooling on the thermal and thermal crack characteristics, the pipe cooling was conducted for 42 walls, and the investigation of thermal cracks was conducted for 14 walls. Based on the investigation, the pipe cooling method decreased the peak temperature of about 13-2$0^{\circ}C$ and the thermal crack width of about 30% for mass concrete walls.

  • PDF

Cooling and Heating Characteristics of System A/C using the Digital Scroll Compressor (디지털 스크롤 압축기를 이용한 시스템 에어컨의 냉난방특성)

  • Jun, Young-Ho;Kim, Dae-Hun;Kweon, Young-Chel;Lee, Yun-Su;Moon, Je-Myung;Hong, Ju-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1536-1541
    • /
    • 2003
  • In order to investigate the cooling and heating characteristics of a variable-capacity system A/C using a digital scroll compressor, the cooling and heating capacities and EER are measured by the psychrometric calorimeter. The capacity of the system is controlled by the digital scroll compressor, which is operated by controling PWM valve and the loading vs. unloading time. When the system A/C is operated under the cooling and heating standard conditions, EER is nearly uniform but cooling capacity and heating capacity increase at minimum, rated and maximum modes. When the auxiliary heater is on, at the cold region, the system A/C produces the excellent heating capacity.

  • PDF

Analysis on electrical and thermal characteristics of MI-SS racetrack coil under conduction cooling and external magnetic field

  • Chae, Yoon Seok;Kim, Ji Hyung;Quach, Huu Luong;Lee, Sung Hoon;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.61-69
    • /
    • 2021
  • This paper presents the analysis and experiment results on the electrical and thermal characteristics of metal insulation (MI) REBCO racetrack coil, which was wound with stainless steel (SS) tape between turn-to-turn layers, under rotating magnetic field and conduction cooling system. Although the field windings of superconducting rotating machine are designed to operate on a direct current, they may be subjected to external magnetic field due to the unsynchronized armature windings during electrical or mechanical load fluctuations. The field windings show the voltage and magnetic field fluctuations and the critical current reduction when they are exposed to an external magnetic field. Moreover, the cryogenic cooling conditions are also identified as the factors that affect the electrical and thermal characteristics of the HTS coil because the characteristic resistance changes according to the cryogenic cooling conditions. Therefore, it is necessary to investigate the effect of external magnetic field on the electrical and thermal characteristics of MI-SS racetrack coil for further development reliable HTS field windings of superconducting rotating machine. First, the major components of the experiment test (i.e., HTS racetrack coil construction, armature winding of 75 kW class induction motor, and conduction cooling system) were fabricated and assembled. Then, the MI racetrack coil was performed under liquid nitrogen bath and conduction cooling conditions to estimate the key parameters (i.e., critical current, time constant, and characteristic resistance) for the test coil in the steady state operation. Further, the test coil was charged to the target value under conduction cooling of 35 K then exposed to the rotating magnetic field, which was generated by three phrase armature windings of 75 kW class induction motor, to investigate the electrical and thermal characteristics during the transient state.

An Experimental Study on Cooling Characteristics for Uni-element Injector face according to the Swirl Chamber in Fuel Injector (연료 인젝터 스월 챔버 유무에 따른 단일 인젝터 페이스 냉각 특성 연구)

  • Jeon, Jun-Su;Shin, Hun-Cheol;Yang, Jae-Jun;Ko, Young-Sung;Kim, Yoo;Kim, Ji-Hoon;Chung, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.148-151
    • /
    • 2007
  • We made two injectors that were equal to all design except for existence or nonexistence of swirl chamber of fuel part, because we want to find cooling characteristics at the injector face according to existence or non existence of swirl chamber of fuel part. And we set regenerative cooling channel in injector face for protecting injector face for prolonged combustion time. Two injectors were performed hot firing test, and then we compared cooling characteristics of two injectors. Also we compared O/F ratio effects on cooling characteristics and combustion characteristics.

  • PDF

Conceptual Development of a Subminiature Cool Pad Applying Sorption Cooling Effect (흡습 냉각 원리를 이용한 소형 냉각 패드에 관한 연구)

  • 황용신;이대영;김우승
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • This paper describes conceptual development and idea-verification of a sub-miniature portable cooler which dose not necessitate any pre-cooling nor any external energy supply. The basic principle of the cooling mechanism is the vaporization of water and sub-sequent cooling due to the evaporative latent heat loss. In this work, the vaporization of the water is stimulated by desiccant material to improve the cooling effect. The evaporative cooling caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. In addition, the portable cooler is fabricated in the shape of a thin pad, and its cooling characteristics are tested and compared with the analytic results.

Study on Operating Characteristics of a Water Cooling System for cooling Power Conversion Semiconductors (전력변환반도체 냉각용 수냉각장치의 작동특성에 관한 연구)

  • Ryoo, Seong-Ryoul;Kim, Sung-Dae;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.249-256
    • /
    • 2009
  • The cooling technology of power conversion semiconductors in the propulsion system for the HEMU(High Electrical Multi Unit) are applied in water cooling method and phase change method such as the immersed type and the heat pipe type. This research designs and manufactures the water cooling system that could cool about heat load Q=2kW and performance tests to apply it by an electric power conversion semiconductors(IGBT) cooling technology. Experimental condition made change of a flow rate, an air velocity and a heat load to confirm operation characteristics of water cooling device, and when is heat load 2kW, air velocity 20 m/s, and water flow rate 7kg/s, it is about $80^{\circ}C$ to temperature of cooling plate.

  • PDF

Flow Characteristics of Oil Jet for Cooling a Piston (피스톤 냉각용 엔진오일 제트 유동특성)

  • Li, L.;Lee, J.H.;Jung, H.Y.;Kim, J.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.50-55
    • /
    • 2006
  • An efficient cooling system for a piston of an automotive engine is very important. Therefore a large capacity gasoline engine or diesel engine has adopted the direct injection cooling system to increase its cooling efficiency. In this direct cooling system, an cooling oil is injected to a piston directly using an oil jet and this cooling oil flows through an oil gallery inside the piston. Flow rate and injection accuracy of this cooling oil are very important because these are main factors that have influence on its efficiency. The purpose of this study is to understand the changes of flow characteristics with various curvatures and diameters of an outlet nozzle and to check whether engine oil enters into the oil gallery well or not. From this study, we found that secondary flow was formed in a curved part of jet due to centrifugal force and irregular flow pattern appeared at the jet outlet. This pattern has influence on flow characteristics of engine oil entering the gallery. These simulation results have a good agreement with experiments.

  • PDF

A Numerical Study on Cooling Characteristics of a Rocket-engine-based Incinerator Devised for High Burning Rate of Solid Particles (고체입자의 높은 연소율을 갖기 위해 고안된 로켓 엔진 기반 소각로의 냉각 해석)

  • Son, Jinwoo;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • Cooling characteristics are investigated numerically in the chamber for high-performance burnout of wastes with solid phase. Before the combustion chamber is manufactured, combustion analysis is performed for evaluation of burning rate and cooling performance. A water cooling method is applied and its feasibility for cooling is examined depending on coolant flow rate. Another method of complex cooling is adopted by combining air film cooling with water cooling, leading to improved cooling performance.