• Title/Summary/Keyword: Cooling and heating system

Search Result 943, Processing Time 0.025 seconds

Experimental Study on the Cooling and Heating Operation Characteristics of a Sea Water Source Heat Pump (해수열원 히트펌프 시스템의 냉난방 운전 특성에 관한 실증 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.544-549
    • /
    • 2009
  • The purpose of this study is to investigate the field Operation Characteristics of a sea water heat source cascade heat pump system and system applicable to Building. Cascade heat pump system is composed R410A compressor, R134a compressor, EEV, cascade heat exchanger, Plate heat exchanger etc. Building area is $890m^2$ and has five floors above ground. R410A is used for a low-stage working fluid while R134a is for a high-stage. The system could runs at dual mode. One is mode of general R410A refrigeration cycle in summer and the other is cascade cycle. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. The filed test results show that the sea water heat source heat pump system exhibits a COP of about 5.5 in cooling mode along with a heating COP of about 4.0 in 1-stage heating mode. Cascade 2-stage heat pump system is enough to supply $60^{\circ}C$ water and heating COP is about 3.0

  • PDF

Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Pulsating Heat Pipe

  • Kim Jeong-Hoon;Im Yong-Bin;Lee Seong-Ho;Lee Euk-Soo;Kim Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type pulsating heat pipe with R-142b as a working fluid. The experiment was performed for 16 thermoelectric modules (6A/15V, size: $40\times40\times4mm$), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc.). Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type pulsating heat pipe were $30\%$ by volume and $30^{\circ}$, respectively. The maximum cooler/heater capacity were 479 W (COP: 0.47) and 630 W (COP: 0.9), respectively.

Dynamic Simulation of a Hybrid Cooling System utilizing Heat Pump, Desiccant and Evaporative Cooler (열펌프, 데시칸트 및 증발식 냉각기를 조합한 하이브리드 냉방 시스템의 동특성 해석 연구)

  • Seo, Jung-Nam;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hybrid desiccant cooling system(HDCS) consists of desiccant rotor, regenerative evaporative cooler, heat pump and district heating hot water coil. In this study, TRNSYS and EES, dynamic and steady simulation programs were used for studying hybrid desiccant cooling system which is applied to an apartment house from June to August. The results show that power consumption of the hybrid desiccant cooling system is 70 kWh in June, 199 kWh in July and 241 kWh in August. Sensible and latent heats removed by the hybrid desiccant cooling system are 300 kWh, 301 kWh in June, 610 kWh, 858 kWh in July and 719 kWh, 1010 kWh in August. COP of the hybrid desiccant cooling system is 8.6 in June, 7.4 in July and 7.2 in August. COP of the hybrid desiccant cooling system decreases when latent heat load increases. Operation time of the system is 70 hours in June, 190 hours in July and 229 hours in August. Since the cooling load is largest in August, the operation time of August is longest for maintaining the indoor temperature at $26^{\circ}C$. Due to the characteristics of hybrid desiccant cooling system for efficiently handling both sensible and latent loads, this system can handle sensible and latent heat loads efficiently in summer.

Analyses Thermal Stresses for Microaccelerometer Sensors using SOI Wafer(I) (SOI웨이퍼를 이용한 마이크로가속도계 센서의 열응력해석(I))

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.36-42
    • /
    • 2001
  • This paper deals with finite element analyses of residual stresses causing popping up which are induced in micromachining processes of a microaccelerometer sensors. The paddle of the micro accelerometer sensor is designed symmetric with respect to the direction of the beam. After heating the tunnel gap up to 100 degree and get it through the cooling process and the additional beam up to 80 degree and get it through the cooling process. We learn the thermal internal stresses of each shape and compare the results with each other, after heating the tunnel gap up to 400 degree during the Pt deposition process. Finally we find the optimal shape which is able to minimize the internal stresses of microaccelerometer sensor. We want to seek after the real cause of this pop up phenomenon and diminish this by change manufacturing processes of microaccelerometer sensor by electrostatic force.

  • PDF

A Study on the GSHP System for Domestic application(I) (GSHP 시스템의 국내적용성에 관한 연구(I))

  • 백성권;안형준;박영진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.439-444
    • /
    • 2002
  • Geothermal or ground source heat pumps(GSHPs) are electrically powered systems that take advantage of the earth's relatively constant temperature to provide heating, cooling, and hot water for homes and commercial buildings. The buried pipe, or ground loop, is the most recent technical advance in heat pump technology. The idea to bury pipe in the ground to gather heat energy began in the 1940s. Only recently, however, have new heat pump designs and improved buried pipe materials been combined to make GHP systems the most efficient heating and cooling systems available. The aim of the study is application of the GSHP system in korea. Our environments for economy, politics and society are different from other countries. For a case, the progressive tax rate of home electricity is represented.

  • PDF

Development of Cooling System for Electronic Devices using Oscillating Capillary Tube Heat Pipe (진동세관형 히트파이프를 이용한 전자기기 냉각에 대한 연구)

  • Kim Jong-Soo;Ha Soo-Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.436-442
    • /
    • 2005
  • Rapid development of electronic technology requires small size, high density packaging and high power of electronic devices. In this paper, characteristics on oscillating heat pipe according to operating conditions (environment temperature, charging ratio of working fluid, inclination) based on experimental study was investigated From the experimental results $25^{\circ}C$(environment temperature) R-141b (working fluid) $40\%$ (charging ratio) was best performace at others of inclination angle and the top heating mode of OCHP performed $80\%$ efficiency of the bottom heating mode.

The Study on the Energy self-sufficiency and Economic Analysis of KIER Zero Energy Solar House (제로에너지 솔라하우스(KIER ZeSH)의 에너지 자립도 및 경제성 분석)

  • Jeong, Seonyeong;Baek, Namchoon;Yoo, Changkyoon;Yoon, Eungsang;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • In this study, the energy and economic analysis of KIER Zero Energy Solar House (KIER ZeSH) was carried out. KIER ZeSH was designed and constructed in the end of 2009 for the purpose of more than 70% energy self-sufficiency in total load as well as less than 20% of additional construction cost. The several building energy conservation technologies like as super insulation, high performance window, wast heat recovery system, etc and renewable energy system. The renewable heating and cooling system is a kind of solar thermal system combined with geo-source heat pump as a back-up device. The capacity of 3.15kW solar BIPV system was also installed on the roof. The measurement by monitering system of ZeSH was conducted for one year from November 2009 to October 2010. The energy self-sufficiency and economic analysis were conducted based on the this monitering result. As a result, the energy self sufficiency is about 83% which is higher than that of the target and the payback period is 11 years.

  • PDF