• Title/Summary/Keyword: Cooling and Heating

Search Result 1,916, Processing Time 0.029 seconds

Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins Bearing Phenylcyclohexyl Mesogenic Moieties (Phenylcyclohexyl mesogenic moieties를 함유한 고 열전도성 액정성 에폭시 수지의 개발)

  • Jeong, Iseul;Kim, Youngsu;Goh, Munju
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.350-355
    • /
    • 2017
  • The new liquid crystalline (LC) epoxy was designed by substituting the phenylcyclohexyl (PCH) mesogen moiety with an alkyl chain at the 2,5 position of the diglycidyl terephthalate. The mesomorphic properties were evaluated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). All LC epoxy derivatives exhibited an enantiotropic smectic phase upon heating and cooling process. The LC phase temperature range was widened by mixing the eutectic mixture of LC epoxies. Interestingly, the cured LC epoxy exhibited the highest thermal conductivity of $0.4W{\cdot}m^{-1}{\cdot}K^{-1}$. The novel LC epoxy with high thermal conductivity might be used as a composite material for electronic and display devices.

The Analysis of the Energy Saving Performances of Building Materials using Phase Change Materials (상변화물질을 적용한 건축자재의 에너지절약 가능성 분석)

  • An, Sang-Min;Hwang, Suck-Ho;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.162-167
    • /
    • 2011
  • Thermal storage plays an important role in building energy saving, which is greatly assisted by the incorporation of latent heat storage in building materials. A phase change material is a substance with a high heat of fusion which, melting and solidifying at a certain temperature, can be storing and releasing large amount of energy. Heat is stored or released when the material changes from solid to liquid. Integration of building materials incorporating PCMs into the building envelope can result in increased efficiency of the built environment. The aim of this research is to identify thermal performance of PCMs impregnated building materials which is applied to interior of building such as gypsum and red clay. In order to analyze thermal performance of phase change materials, test-cell experiments and simulation analysis were carried out. The results show that micro-encapsulated PCM has an effect to maintain a constant indoor temperature using latent heat through the test-cell experiments. PCM wallboard makes it possible to reduce the fluctuation of room temperature and heating and cooling load by using EnergyPlus simulation program. Phase change material can store solar energy directly in buildings. Increasing the heat capacity of a building is capable of improving human comfort by decreasing the frequency of indoor air temperature swings so that the interior air temperature is closer to the desired temperature for a long period of time.

  • PDF

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

Simulation of Horizontal Thin-film Thermoelectric Cooler for the Mobile Electronics Thermal Management (모바일 전자기기의 열점 제어를 위한 수평형 박막 열전 냉각 소자의 모사 해석)

  • Park, Sangkug;Park, Hong-Bum;Joo, Young-Chang;Joo, Youngcheol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.17-21
    • /
    • 2017
  • Horizontal thin-film thermoelectric cooler has been simulated using a commercial software (ANSYS Workbench Thermal-electric). The thermoelectric cooler consists of thin-film n-type $Bi_2Te_3$, p-type $Sb_2Te_3$ thermoelectric elements, and Au electrode, respectively. The hot spot was placed under the center of device which represents Joule heating. Numerical analysis was conducted by geometric variable, and a maximum temperature difference of $13^{\circ}C$ was obtained. As from the simulation parameters, we presented an optimized design for high efficiency cooling.

Salt Distiller With Mesh-covered Crucible for Electrorefiner Uranium Deposits

  • Kwon, S.W.;Lee, Y.S.;Kang, H.B.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. Distillation process was employed for the cathode processing. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. In this study, a mesh-covered crucible was investigated for the sat distillation of electrorefiner uranium deposits. A liquid salt separation step and a vacuum distillation step were combined for salt separation. The adhered salt in uranium deposits was efficiently removed in the mesh-covered crucible. The salt distiller was operated simply since repeated cooling - heating step was not necessary for the change of the crucible. The operation time could be reduced by the use of the mesh-covered crucible and the combined operation of the two steps. A method to preserve a vacuum level was proposed by double O-rings during the operation of the distiller with the mesh-covered crucible. After the salt distillation, the salt content was measured and was below 0.1wt% after the salt distillation. The residual salt after the salt distillation can be removed further during melting of uranium metal.

  • PDF

Development of Optimum Design Method for Geothermal Performance based on Energy Simulation (지열 성능해석 시뮬레이션에 기반한 최적 설계 수법 개발)

  • Moon, Hyeongjin;Kim, Hongkyo;Nam, Yujin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.43-48
    • /
    • 2019
  • Since the revision of the Rationalization of Energy Use Law, the spread of new and renewable energy in buildings has been promoted. In addition, the production of electric power and thermal energy is an important issue in the change of energy paradigm centered on the use of distributed energy. Among them, geothermal energy is attracting attention as a high-performance energy-saving technology capable of coping with heating / cooling and hot water load by utilizing the constant temperature zone of the earth. However, there is a disadvantage that the initial investment cost is high as a method of calculating the capacity of a geothermal facility by calculating the maximum load. The disadvantages of these disadvantages are that the geothermal energy supply is getting stagnant and the design of the geothermal system needs to be supplemented. In this study, optimization design of geothermal system was carried out using optimization tool. As a result of the optimization, the ground heat exchanger decreased by 30.8%, the capacity of the heat pump decreased by 7.7%, and the capacity of the heat storage tank decreased by about 40%. The simulation was performed by applying the optimized value to the program and confirmed that it corresponds to the load of the building. We also confirmed that all of the constraints used in the optimization design were satisfied. The initial investment cost of the optimized geothermal system is about 18.6% lower than the initial investment cost.

A Study on High Efficiency Geothermal Heat Pump System by Improving Flow of Heat Exchanger (열교환기의 흐름개선을 통한 고효율 지열 히트펌프 시스템에 관한 연구)

  • Ahn, Sung-Hwan;Choi, Jae-Sang;Kim, Sang-Bum;Ahn, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.42-46
    • /
    • 2017
  • As $CO_2$ emission with imprudent using fossil fuel, annual mean temperature of earth is increased in every year. Geothermal energy is inexhaustible energy resource to solve this problem. Heat pump performance and heat exchange efficiency of ground loop are important to distribute widely. Thus, this study are performed to increase heat pump performance and heat exchange efficiency of ground loop with dual expansion valves and spacer. As a results, COP of cooling & heating is obtained improvement up to 11.4% using dual expansion valves, and heat exchange efficiency is increased up to 17.5% using spacer. It will be reduced initial installation cost due to increasing heat pump performance and heat exchange efficiency of ground loop.

User Dynamic Access Control for Privacy Protection in Smart Home (스마트 홈에서 프라이버시 보호를 위한 사용자 동적 접근제어)

  • Cho, Do-eun;Kim, Si-jung
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.17-22
    • /
    • 2018
  • Smart home is a technology for monitoring and controlling all the information about a house by integrating various home applications like cooling, heating, lighting, kitchen and security systems into a network. Although home appliances have become more convenient to use due to the development of smart home technology, they are also more vulnerable to information security hazards. Unauthorized visitors may have access to any of home appliance to arbitrarily control it or acquire information. This causes serious privacy and security problems, which should be solved to further smart home technology. This present paper proposed a dynamic user access control system for privacy protection in smart homes. The proposed system defines the role of a user of smart home services by automatically identifying the status information of the user and dynamically controls the access range for the service. In this way, the privacy of a user can be protected and the inter-smart device service is effectively provided. Consequently, the proposed dynamic user access control for smart home will improve the security service for protecting privacy in smart home devices.

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

An application to HVAC control system based on occupants' thermal response in office buildings (공조제어 적용을 위한 재실자 온열반응 데이터의 유효성 분석에 관한 연구)

  • Han, Hyesim;Kim, Jonghun;Jeong, Hakgeun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.111-117
    • /
    • 2014
  • In South Korea, the government has recently enforced regulations associated with buildings. Temperature restriction in indoor environment is one of the common ways of energy reduction in order not to dissipate heating and cooling energy; however the people who are in restricted temperature feels uncomfortable. Furthermore, occupants cannot feel the same thermal sensation even they are in the same place. For the reason, occupants should express their thermal sensation and HVAC system should be able to apply their demand. It is proved by an adaptive principle. The adaptive model means that people react in ways which tend to restore their comfort, when change occurs such as to produce discomfort. In order to design HVAC control strategies based on adaptive model, we designated an existing office building as a reference building to gather data from actual field. Furthermore, we gathered occupants' thermal sensation and clothing insulation in real-time. We filtered the data with Kalman's filter method. The data was reasonable when there is an alarm messages for asking questionnaire. The response ratio were different in occupants' thermal condition. In conclusion, the filtered occupants' thermal sensation can be used as a real time HVAC control and input value of HVAC control.