• Title/Summary/Keyword: Cooling analysis

Search Result 2,901, Processing Time 0.031 seconds

A Thermal Analysis for the Underground Power Transmission Cable by a Water Pipe Cooling Method with Trough in Tunnel (전력구트라프간접수냉방식에서의 지중송전케이블에 대한 열해석)

  • Park, Man-Heung
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.59-73
    • /
    • 1995
  • The thermal analysis is accomplished with the route for the underground power transmission system which adopts the water pipe cooling with trough in tunnel. As a result, in case of a cooling system based on a refrigerator, the optimum condition for the flow rate of cooling water and the air velocity are calculated as the $2{\sim}3{\ell}/s/pipe$ and $1{\sim}2m/s/fan$, respectively. On the other hand, in case of cooling tower the optimum condition for them are calculated as the $2{\sim}3{\ell}/s/pipe$ and 6 m/s/fan, respectively. But the cooling system based on a cooling tower has the problem of enlarging the size of cooling fan and suppressing the labor of operator in tunnel. Therefore, to meet all the cooling conditions for a given cooling section, the cooling system based on a refrigerator is more acceptable.

  • PDF

Estimating the Air Temperature Cooling Effect of the Cheonggyechun Stream Restoration Project of Seoul, Korea

  • Park Chong-Hwa;Kwon Young-Sang
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.2
    • /
    • pp.120-129
    • /
    • 2004
  • Urban stream restoration projects can improve water quality, wildlife habitats, urban landscape, outdoor recreation spaces, and urban microclimate. The objectives of this research were to investigate temperature cooling effect of urban streams by using satellite imagery, to evaluate environmental variables related to stream cooling effect, and to estimate the cooling effect of the Cheonggye stream restoration project of Seoul, Korea. Findings of this research can be summarized as follows. First, a method of estimating temperature distribution around urban streams by using satellite imagery was developed. Scatter plots of distance from stream edges and average temperature obtained through multiple buffering were used for the estimation. Second, urban temperature cooling effect of streams was estimated by comparing background temperature and temperature of each buffer zone. Third, environmental factors affecting stream cooling effect were also identified. Fourth, the temperature cooling effect of the restoration project was estimated based on three scenarios. An estimated cooling effect based on the average cooling effect of existing tributaries showed the most significant effect; $2.0^{\circ}C$ lower than the present level at the edge of the renovated stream. It was estimated that the temperature of the same area would be $1.4^{\circ}C$ cooler than the present level if the cooling effect of the Yangjaechun was used as the bench mark But the effect would be $1.2^{\circ}C$ lower than the present level if environmental variables related to the temperature cooling effect of urban streams were used as the bench mark.

  • PDF

Developing Integrated Compressor Cooler System of 3D Printing Nozzle (3D 프린팅 노즐의 일체형 압출기 쿨링 시스템 개발)

  • Son, Ji-Hwan;Park, Hyun-Woo;Ha, Dong-Woo;Lee, Chang-U;Kim, Jin-Su;Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In a large 3D printer when the cooler, which cools the filament, acts in one direction, the area directly exposed to the cooling is cooled to the proper temperature. However, the cooling effect on the opposite area is relatively less. It was found in experiments that filaments with a thickness of over 2 mm exhibit the cooling problem in one directional cooling. Consequently, cooling was performed to prevent the flow-down and to produce firm support leading to an improvement in product quality in extrusion. Further, the lay-up of a 3D printer with five guides combined with a duct was achieved. Analysis showed that the improvement in the cooling effect enables stable extrusion and lay-up and thus, reduces fabrication time.

Effects of Performance Analysis of a Desiccant Cooling System with a Direct Evaporative Cooler in the Inlet of Regeneration Process (재생입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향)

  • Dash, Ulziiutas;Sung, Sang-Chul;Oh, Myung-Do;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.328-335
    • /
    • 2010
  • The purpose of this study is to make an analysis of influence on the cooling capacity and COP of a desiccant cooling system with a regenerative evaporative cooler when a direct evaporative cooler was applied to the inlet of regeneration process of this system. We used cycle simulation in order to analyze the performance of this system. From the cycle simulation, we knew that the optimal rotation time of desiccant rotor was between 160s and 220s and hardly ever affected cooling capacity of desiccant cooling system when this system was operated at the outdoor air condition of $35^{\circ}$ and 40% RH and low regeneration temperature of $60^{\circ}$. Also there was optimal area ratio of regeneration to dehumidification between 0.7 and 1.0. Our results showed that it had a small effect on the system’s cooling capacity to install direct evaporative cooler at the inlet of regeneration process.

Effect of Forced Cooling condition along with Welding on Welding Angular Distortion (용접 후면 강제냉각조건이 용접각변형에 미치는 영향)

  • Park, Jeong-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2021-2026
    • /
    • 2013
  • In this study, the effect on the welding angle distortion was reviewed by carrying out a thermal elastic-plastic analysis while changing the cooling condition(width, length, and distance from weld torch to cooling torch) the back of the welding zone for the butt weld joint. The review results revealed that maximum 57% of reduction in the angle distortion was achieved when the distance between weld torch and cooling tip of 25mm, cooling length of 80mm, and cooling width of 30mm were maintained.

A Flow Channel Design on IR Window Cooling Device (적외선 윈도우 냉각장치 유로 설계)

  • Park, Youn-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.559-566
    • /
    • 2011
  • This paper presents the flow passage design for a window cooling device, which have a conical poppet valve and an emissive orifice. Computational flow analysis and experiment are conducted according to the poppet strokes. The results show satisfactory flow characteristics that pressure is reduced enough to endure material strength and the flow does not choked inside window. The correction factor of discharge coefficients is found between 2-dimensional analysis and experiments, which is applied to control coolant flow rates of the window cooling device.

Energy and Exergy Analysis of Kalina Based Power and Cooling Combined Cycle (칼리나 사이클을 기반으로 하는 동력 및 냉동 복합 사이클의 에너지 및 엑서지 성능 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;KO, HYUNG JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.242-249
    • /
    • 2020
  • The Kalina cycle (KC) is considered as one of the most efficient systems for recovery of low grade heat. Recently, Kalina based power and cooling cogeneration cycles (KPCCCs) have been suggested and attracted much attention. This paper presents an energy and exergy analysis of a recently suggested KPCCC with flexible loads. The cycle consists of a KC (KCS-11) and an aqua-ammonia absorption refrigeration cycle. By adjusting the splitting ratios, the cycle can be operated with four modes of pure Kalina cycle, pure absorption cooling cycle, Kalina-cooling parallel cycle, and Kalina-cooling series cycle. The effects of system variables and the operating modes on the energetic and exergetic performances of the system are parametrically investigated. Results show that the system has great potential for efficient utilization of low-grade heat source by adjusting loads of power and cooling.

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

Flow and Heat Transfer Analysis of Cooling Water in a Rotating Magnetron Cathode (회전형 마그네트론 음극의 냉각수 유동 및 열전달 해석)

  • Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.171-179
    • /
    • 2019
  • We have developed a numerical model to analyze flow dynamics and heat transfer characteristics of the cooling water in a circular rotating magnetron cathode by a moving boundary grid method realized in a commercial multiphysics package, CFD-ACE+. The numerical model is composed of a target, dual mass rotating cathode and cooling water connections. When the inlet and outlet of the cooling water are offset by the same distance from the rotation axis, the temperature at the center is higher by $50^{\circ}C$ at maximum. At 5 mm away from the target surface, the temperature profile showed typical center high characteristic. At heat input of 30 kW, the maximum temperature change of the cooling water hits $6^{\circ}C$ within 0.5 sec under 60 rpm. With a cooling water configuration of center in/edge out, the temperature of the center region of the target gets lowered. Within 100 seconds of plasma operation time, the cooling water temperature keeps getting higher.