• 제목/요약/키워드: Cooling Time

검색결과 1,644건 처리시간 0.033초

다목적용 치과용 금합금의 소성 시 냉각속도와 계류시간에 따른 경도와 미세구조의 변화 (Hardness and microstructural changes by cooling rate and holding time during porcelain firing of a multi-purpose dental gold alloy)

  • 조미향
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.271-281
    • /
    • 2011
  • Purpose: The aim of this study is to investigate the changes in hardness and microstructure of a dental multipurpose alloy after simulated complete firing with controlled cooling rate and holding time by characterizing the changes in hardness and microstructure after simulated firing with various cooling rates and holding times. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine. The specimens were completely fired in furnace. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: The maximum hardness value was obtained at stage 0 after simulated firing with various cooling rates (quick cooling, stage 0, stage 1, stage 2, stage 3). By the repetitive firing, the hardness of the tested alloy decreased gradually. By holding the specimen at $500^{\circ}C$ for 10-20min after simulated firing, the hardness increased apparently. However, to hold the alloy for long periods of time in the relatively high temperature after simulated firing resulted in the formation of thick oxidation layer. The oxide film formed on the surface of the alloy after simulated complete firing with controlled cooling rate, which was mainly composed of O and Zn. Conclusion: It is reasonable to hold the alloy at $500^{\circ}C$ for 10-20min after complete firing in other to improve the final hardness of the alloy.

베네치안 블라인드의 슬래트 각도변화가 건물의 냉난방 부하에 미치는 영향 (The Effect on the Heating and Cooling Load of Building by Slat Angle Variation of Venetian Blind)

  • 조성환;신기식
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.171-183
    • /
    • 1995
  • Generally, among many kinds of shading devices such as venetian blind, sunscreen, louver and curtain, venetian blind is using widely because the mechanism is so simple and easy to use solar insolation by controlling the slat angle. Analysis of time dependent heat transfer through the window with venetian blind is very important in order to use it effectivly. Therefore, in this study, theoretical thermal analysis method was developed to analyze time dependent heat transfer through a double pane window with and without venetian blind, and was made one module of TRNSYS(A Transient Simulation Program)program. By this way, it was analyzed that how much the variation of slat angle, slat colour and slat absorptivity of venetian blind would be affected on the heating and cooling load of building, and also which colour and angle of slat was optimal for the heating and cooling load of building.

  • PDF

레이저 절단 판재의 브레이징을 이용한 적층 사출금형

  • 조용무;김재도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.323-327
    • /
    • 1993
  • Mold-making industry demands currently to reduce the tooling costs and time in mold making, and to improve the productivity and quality in injection molding process. These problems can be easily removed by laminated injection mold which is made with metal sheets prepared by laser cutting and bonded by brazing. Comparing withthe conventional mold making technology which mainly depends on the machining, this new technologyenables an arbitary design of cooling circuit without anyrestrictions of geometry. So it brings about high production rates of the injection molding processes. This paper estimate the conventional and laminated injection mold making process with a simple molding, and also the cooling efficiencyof thoes two kinds of mold with the filling and cooling analysis. The results show that the laminated injectionmold has much shorter tooling time, uniform mold temperature, and shorter cooling time in injection molding process.

가열된 고체표면에 부착된 단일 액적의 증발냉각 (Evaporation Cooling of Single Droplet on a Heated Solid Surface)

  • 유갑종;방창훈;김정수
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.845-852
    • /
    • 2001
  • The characteristics of evaporation cooling of single droplet on a heated surface were studied experimentally. The two kinds of heater modules were tested to measure cooling characteristics of metal surface (high conductivity) and Teflon surface (low-energy surface, low conductivity). The results showed that time averaged heat flux during droplet evaporation increased exponentially with initial surface temperatures of brass, copper and steel. The heat flux and evaporation time did not varied with metal conductivities. However, the temperature drop after the deposition of droplet was larger on Teflon than on the metals. Thus, the correlation of interface temperature between liquid droplet and metal surface was proposed as a function of the initial surface temperature of heating materials, which could be applied to both metal and non-metal ones.

아공정 Al-Si 합금에서 Si 함량과 냉각속도에 따른 제이차수지상간격의 변화 (Change of Secondary Dendrite Arm Spacing of Hypoeutectic Al-Si Alloys according to Si Content and Cooling Rate)

  • 박경섭;김희수
    • 한국주조공학회지
    • /
    • 제37권4호
    • /
    • pp.108-114
    • /
    • 2017
  • In this study, we investigated the effect of the Si content on the secondary dendrite arm spacing (SDAS) of hypoeutectic Al-Si binary alloys in the range of 4~10 wt% Si. Cooling curves were measured during the solidification of the alloy cast in a step-wise mold. We compared two kinds of solidification time: the first is the total solidification time for both dendritic and eutectic growth, and the second is the solidification time for only dendritic growth. The proportional constant in the relationship between SDAS and cooling rate was estimated, as this constant represents the stability of the cast microstructure. The proportional constant decreased with the Si contents from 4 wt% to 8 wt%, and it remains relatively uniform with up to 10 wt% of Si.

PF-5052의 분무냉각 비등열전달에 관한 실험적 연구 (Experimental Study on Boiling Heat Transfer of PF-5052 in Spray Cooling)

  • 김영찬
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.938-944
    • /
    • 2008
  • The boiling heat transfer was experimentally investigated for the PF-5052 sprays impacting a square heated test surface in a downward direction. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made under the test conditions of Q=$3.32{\time}10^{-6}{\sim}\;12.98{\time}10^{-6}m^3/s$, ${\Delta}T_{sub}=5{\sim}25^{\circ}C$. Also, heat transfer measurements were made using the copper block of $10{\time}10mm^2$ test area heated by nine cartridge heater. From the experimental results, correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30$ % error for PF-5052.

공동주택에서 지열 냉난방 시스템 적용시 경제성 분석 (Economic Analsys of Cooling-Heating System Using Ground Source Heat in Multi Family Apartment)

  • 박용부;박종배;임해식;백성권
    • 한국지반환경공학회 논문집
    • /
    • 제8권3호
    • /
    • pp.11-18
    • /
    • 2007
  • 본 연구에서는 파급효과가 큰 공동주택에서 지열 냉난방 시스템의 경제성을 아파트 분양평형, 운전시간, 냉난방 및 급탕 설치형태별로 구분하여 초기 공사비 증가, 운전비 절감액, 초기 투자비 회수기간등을 산정하였다. 냉난방 및 급탕 운전시간이 많을수록 초기 공사비 증가액에 비해 운전비용 절감액이 커 초기 투자비 회수기간이 단축되었다. 전용면적이 클수록 투자회수 기간이 길었으며 냉난방 및 급탕 설치형태에서는 냉난방을 지열원, 급탕을 폐열회수한 경우가 초기 투자 회수기간이 가장 짧았다. 기존 시스템(패키지 에어콘, LNG 난방 및 급탕)에 비해 냉난방, 급탕을 모두 지열로 이용하는 경우, 냉난방은 지열, 급탕은 폐열을 이용하는 경우, 냉난방은 지열, 급탕은 LNG인 경우에 공사비가 $m^2$당 각각 약 72,000원, 66,900원, 62,300원 정도 증가하였다.

  • PDF

주거건물의 냉방 부하 패턴에 따른 구체축열시스템 운전 방안 (Operating Mode of Thermally Activated Building System (TABS) for Residential Buildings According to their Cooling Load Profile)

  • 박상훈;여명석;유미혜;이유지;정웅준;김광우
    • 한국주거학회논문집
    • /
    • 제23권2호
    • /
    • pp.99-106
    • /
    • 2012
  • Compared to Packaged Terminal Air Conditioning Systems, Radiant Cooling Systems have the advantage of energy saving and thermal comfort. Thermally Activated Building System (TABS) is one of the radiant heating and cooling systems. The main difference between TABS and other radiant systems lies in the usage of the time-lag effect of storing heat energy in the concrete. Current energy usage in summer time is concentrated within a specific time by using Packaged Terminal Air-Conditioner (PTAC). Due to the time-lag effect of TABS, energy usage can be distributed to other time zones. To maximize this effect, it is important to determine the appropriate operating mode, which for TABS is dependent upon the cooling load generated by the occupancy schedule. In this study, occupancy schedules are determined for various residential types. The operating modes of TABS for these residential types are estimated by using a dynamic computational simulation method. The results indicate that the operating modes of TABS can be determined by residential type and occupancy schedule. The load handled ratio by TABS is set up differently according to the cooling load profile obtained from residential type and occupancy schedule. By using TABS, energy consumption could be reduced by 20% compared to PTAC.

X-ray tube 내 열유동 해석에 관한 연구 (A study on the analysis of heat flow in X-ray tube)

  • 윤동민;서병석;전용한
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.26-31
    • /
    • 2021
  • As the aging ages, the disease also increases, and the development of AI technology and X-ray equipment used to treat patients' diseases is also progressing a lot. X-ray tube converts only 1% of electron energy into X-ray and 99% into thermal energy. Therefore, when the cooling time of the anode and the X-ray tube are frequently used in large hospitals, the amount of X-ray emission increases due to temperature rise, the image quality deteriorates due to the difference in X-ray dose, and the lifespan of the overheated X-ray tube may be shortened. Therefore, in this study, temperature rise and cooling time of 60kW, 75kW, and 90kW of X-ray tube anode input power were studied. In the X-ray Tube One shot 0.1s, the section where the temperature rises fastest is 0.03s from 0s, and it is judged that the temperature has risen by more than 50%. The section in which the temperature drop changes most rapidly at 20 seconds of cooling time for the X-ray tube is 0.1 seconds to 0.2 seconds, and it is judged that a high temperature drop of about 65% or more has occurred. After 20 seconds of cooling time from 0 seconds to 0.1 seconds of the X-ray tube, the temperature is expected to rise by more than 3.7% from the beginning. In particular, since 90kW can be damaged by thermal shock at high temperatures, it is necessary to increase the surface area of the anode or to require an efficient cooling system.

전화기 케이스 외관의 Weldline 제거를 위한 금형 급속 가열-냉각 기술 개발 (Development of rapid mold heating & cooling technology to remove weldline on surface appearance in telephone case)

  • 차백순;박형필;이상용;김옥래;이승욱;이병옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.439-443
    • /
    • 2008
  • Painting process or coating with acrylic film may improve the surface defects of injection molded parts deteriorated by weldlines. flow marks. and etc. However such processes increase the production costs and increase environmental problems. Recently various types of rapid mold heating & cooling technology have been developed in order to improve surface quality of products. In this study. the heating & cooling performance of a telephone case mold is investigated by heat transfer analysis, in which the rapid mold heating & reeling technology is applied. The surface temperature of the mold was measured using thermal image camera and compared with analysis results. The influence of the rapid mold heating & cooling technology on weldline appearance and cycle time increase was also examined.

  • PDF