• 제목/요약/키워드: Cooling Plate

검색결과 509건 처리시간 0.027초

로봇 냉각을 위한 수냉식 냉각판의 열적 성능 평가 (Thermal Performance Test of Liquid Cooling Type Cold Plates for Robot Cooling)

  • 강상우;이석원;황규대;김서영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1864-1869
    • /
    • 2007
  • In this study, we compare thermal performance between four different types of cold plates for humanoid robot cooling. Two commercially available cold plates made of copper have different dimensions and internal flow paths: One has $20{\times}20$ $mm^2$ base area with micro-channels and the other has $62.5{\times}62.5$ $mm^2$ base area with 85 round pin-fins. And two different types of cold plates of $20{\times}20$ $mm^2$ base area with 7 mm high are made of PC (polycarbonate), which aims to reduce the weight of cooling system. All cold plates are mounted on a $20{\times}20$ $mm^2$ copper block with two cartridge heaters of 30 $W/cm^2$. The overall heat transfer coefficient and thermal resistances for the liquid-cooled cold plates are obtained. The copper cold plate with micro-channels showed the best performance. Polycarbonate cold plates display fairly good thermal performance with more reduced system weight.

  • PDF

충돌제트/유출냉각기법에서 횡방향유동이 열/물질전달에 미치는 영향 (Effect of Crossflow on Heat (Mass) Transfer of an Impingement/Effusion Cooling System)

  • 남용우;최종현;조형희;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2219-2226
    • /
    • 2003
  • Two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter, and initial crossflow passes between the plates. Both the injection and effusion hole diameters are 10 mm, and the Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effect of crossflow, the flow rate of crossflow is changed from 0.2 to 2 times of that of the impinging jet. A naphthalene sublimation method is used to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. With the initial crossflow, the heat/mass transfer rates on the effusion (target) plate decrease as the velocity of crossflow increases, since the crossflow induces the locally low transfer regions formed at the mid-way between the effusion holes. However, the impingement/effusion cooling with crossflow presents higher heat/mass transfer rates than the array jet impingement cooling with the same initial crossflow.

  • PDF

선상 가열시 수냉 효과를 고려한 강판의 변형 추정에 관한 연구 (The Estimation of Curvature Deformation of Steel Plates in Water Cooling Process after Line Heating)

  • 황보혁;양박달치
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.209-212
    • /
    • 2006
  • Line heating with water cooling is generally adapted process in the shipyards for the forming hull surface. The purpose of this paper is to develop a model of thermal deformation in water cooling process after the line heating. In order to simulate the cooling process, heat transfer analysis was performed by assuming the effects of water cooling as a negative heat-source. Experiment for the line heating with water cooling was performed for 9 models of plates in order to verify the cooling model. By using the suggested model for the water cooling process, it could be observed that the present method predict the plate deformations in the line heating more accurately.

  • PDF

Transient Characteristics of a Two-Phase Thermosyphon Loop for Multichip Module

  • Nam, Sang-Sig;Choi, Sung-Bong;Kim, Jae-Hee;Kwak, Ho-Young
    • ETRI Journal
    • /
    • 제20권3호
    • /
    • pp.284-300
    • /
    • 1998
  • A new thermosyphon cooling module (TSCM) has designed, fabricated and tested to cool the multi-chip module consists of a cold plate and an integrated condenser. With an allowable temperature rise of $56^{\circ}C$ on the surface of the heater, the cooling module TSCM can handle a heat flux of about 2.7 $W/cm^2$ using R11 as working fluid. The transient characteristics of the cooling module have been proved to be excellent: that is, when a heat load is applied inside of the system, steady state can be achieved within 10 to 15 minutes. It has been found that the length of the vapor channel between the cold plate and the condenser in addition to the ambient and the condenser temperatures affect the system performance.

  • PDF

고온 강판의 분무냉각에 있어서 MHF 점에 관한 연구 (Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate)

  • 김영찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.175-180
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about $900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the experimental results show that the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF

원형 충돌제트를 이용한 Pedestal 형상의 핀이 부착된 Chip 냉각 (Round Jet Impingement Heat Transfer on a Pedestal Encountered in Chip Cooling)

  • 정영석;정승훈;이대희;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.546-552
    • /
    • 2001
  • The heat transfer and flow measurements on a pedestal encountered in chip cooling. A uniform wall temperature boundary condition at the plate surface and on a pedestal was created using shroud method. Liquid crystal was used to measure the plate surface temperature. The jet Reynolds number (Re) ranges from 11,000 to 50,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the dimensionless pedestal diameter-to-height (H/D) from 0 to 1.0. The results show that the Nusselt number distributions at the near the pedestal exhibit secondary maxima at $r/d{\cong}1.0\;and\;1.5$. The formation of the secondary maxima is attributed to an create in the vortex by the pedestal.

  • PDF

가열 상태의 다공성 판에 충돌하는 액적의 냉각 성능에 대한 기초 연구 (Cooling Effect of a Heated Porous Plate by Droplets Impingement - A Preliminary Study)

  • 류성욱;김우식;이상용
    • 한국분무공학회지
    • /
    • 제14권1호
    • /
    • pp.20-27
    • /
    • 2009
  • In the present work, effects of spray characteristics (droplet size and velocity) on the temperature variation of a heated porous plate (Melamine foam) have been investigated through a series of experiments. Based on the measured data, time required to cool down the hot porous material turned out to be shorten by doing with the smaller droplet size and/or smaller impinging velocity. In particular, the droplet size effect is more prominent than the impinging velocity. The cooling performance in the porous material is directly proportional to the penetration velocity.

  • PDF

고온 평판의 분무냉각에 있어서 MHF점에 관한 연구 (Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate)

  • 김영찬
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.974-981
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about$ 900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF

Development of a Plate-type Megasonic with Cooling Pins for Sliced Ingot Cleaning

  • Hyunse Kim;Euisu Lim
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.21-27
    • /
    • 2023
  • In this article, a plate-type megasonic cleaning system with cooling pins is proposed for the sliced ingot, which is a raw material of silicon (Si) wafers. The megasonic system is operated with a lead zirconate titanate (PZT) actuator, which has high electric resistance, thus when it is being operated, it dissipates much heat. So this article proposes a megasonic system with cooling pins. In the design process, finite element analysis was performed and the results were used for the design of the waveguide. The frequency with the maximum impedance value was 998 kHz, which agreed well with the measured value of 997 kHz with 0.1 % error. Based on the results, the 1 MHz waveguide was fabricated. Acoustic pressures were measured, and analyzed. Finally, cleaning tests were performed, and 90 % particle removal efficiency (PRE) was achieved over 10 W power. These results imply that the developed 1 MHz megasonic will effectively clean sliced ingot wafer surfaces.

  • PDF

주변공기조건이 충돌수분류에 의한 고온강판의 냉각에 미치는 영향 연구 (The Effect of Ambient Air Condition on a Hot Steel Plate Cooled by Impinging Water Jet)

  • 이필종;최해원;이승홍
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.29-38
    • /
    • 2000
  • It is observed that the cooling capacity of impinging water jet is affected by the seasonal conditions in steel manufacturing process with large scale. To confirm this phenomena, the cooling experiments of a hot steel plate by a laminar jet were conducted for two different initial ambient air temperature($10^{\circ}C$ and $40^{\circ}C$) in a closed chamber, and an inverse heat conduction method is applied for the quantitative comparison. It is found that the cooling capacity under $10^{\circ}C$ air temperature is lower than that under $40^{\circ}C$, as is the saturated water vapor is more easily observed, and the amount of total extracted heat in the case of $10^{\circ}C$ is smaller by nearly 15% than that of $40^{\circ}C$ case. From these results, it is thought that the quantity of water vapor, which could be absorbed until saturation, effects on the mechanism of boiling heat transfer.