• Title/Summary/Keyword: Cooling Mode

Search Result 321, Processing Time 0.025 seconds

Reliability improvement methods of AF track circuits for the train control system (열차내 연산시스템용 AF궤도회로 신뢰성향상 방안 연구)

  • Park, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4762-4767
    • /
    • 2012
  • The AF track circuit that detecting train position and transmitting various train control data for DTG to the train on-board is composed of single operation system. If a failure occurs on this system, the driver should be operate the train by manually until the system is restored, because the system cannot control switch machines and signals by automatically. In this process the human error affects to the train delay, collision, derailment and critical safety accident. Therefore, this document has analyzed the effects that each failure mode influences on system and train, and quantified the failure valuation point and class. Basis on this quantified analysis result, MTBF increased and MTTR decreased and failure number also decreased by adopting the independent installation of power supply, the replacement of defected capacitors, the installation of resister cooling system and the improvement of maintenance methods. And the failure factors of AF track circuits were decreased by conducting the preventive maintenance which is a quantitative way of maintenance system by experience.

Transition Prediction of compressible Axi-symmetric Boundary Layer on Sharp Cone by using Linear Stability Theory (선형 안정성 이론을 이용한 압축성 축 대칭 원뿔 경계층의 천이지점 예측)

  • Park, Dong-Hoon;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.407-419
    • /
    • 2008
  • In this study, the transition Reynolds number of compressible axi-symmetric sharp cone boundary layer is predicted by using a linear stability theory and the -method. The compressible linear stability equation for sharp cone boundary layer was derived from the governing equations on the body-intrinsic axi-symmetric coordinate system. The numerical analysis code for the stability equation was developed based on a second-order accurate finite-difference method. Stability characteristics and amplification rate of two-dimensional second mode disturbance for the sharp cone boundary layer were calculated from the analysis code and the numerical code was validated by comparing the results with experimental data. Transition prediction was performed by application of the -method with N=10. From comparison with wind tunnel experiments and flight tests data, capability of the transition prediction of this study is confirmed for the sharp cone boundary layers which have an edge Mach number between 4 and 8. In addition, effect of wall cooling on the stability of disturbance in the boundary layer and transition position is investigated.

DEVELOPMENT OF A MONITORING SYSTEM FOR AN INFRARED CAMERA (적외선카메라를 위한 모니터 시스템 개발)

  • Cha, Sang-Mok;Moon, Bong-Kon;Jin, Ho;Yuk, In-Soo;Nam, Uk-Won;Lee, Sung-Ho;Park, Yung-Sik;Cho, Seoung-Hyun;Mok, Seung-Won;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.425-434
    • /
    • 2006
  • The KASINICS (KASI Nea.-Infrared Camera System) is a ground-based instrument developed by the Korea Astronomy and Space Science Institute (KASI). We developed a temperature and vacuum monitoring system for operating the KASINICS. The system consists of hardware and software parts. The acquired data we saved on a hard disk in a real-time mode. This system on also be applied to general cryogenic instruments. We tested our monitoring system for the cooling and vacuum performance of the KASINICS. The results show that our system is efficient and stable for the operation of the KASINICS.

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

The Performance Characteristics of Heat Pump Using the Refrigerant Subcooling (냉매 과냉각을 이용한 열펌프 시스템의 성능 특성)

  • Roh, Geon-Sang;Son, Chan-Ghyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.413-421
    • /
    • 2007
  • In this paper, the performance characteristics of heat pump system using a new refrigerant subcooling system designed for the study, are introduced. The new heat pump system have the ice storage tank at the outlet of condenser. The experimental apparatus is a well-instrumented water/water heat pump which consisted of working fluid loop, coolant loop, and ice storage tank. The experiment parameters of subcooling ranged as the evaporating temperature from $-5^{\circ}C$ to $8^{\circ}C$, the condensing temperature from $30^{\circ}C$ to $35^{\circ}C$. The test of the ice storage was carried out at evaporating temperature of $-10^{\circ}C$ and the ice storage mode is Ice-On-Coil type. The working fluid was R-22 and the storage materials were city-water. The test results obtained were as follows; The refrigerant mass flow rate and compressor shaft power were unchanged by the degrees of subcooling, that is, they were independent of degrees of subcooling. The cooling capacity of the new heat pump system increase as the evaporating temperature and subcooling degrees increase and is higher by $25{\sim}30%$, compared to the normal heat pump system. The COP of the new heat pump system increases as the degrees of subcooling and evaporating temperature increase and is higher by 28% than that of the normal heat pump system.

Study on the Alternating Flow Hydraulics and Its New Potential Application in the Geotechnical Testing Field

  • Sang, Yong;Han, Ying;Duan, Fuhai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.245-255
    • /
    • 2016
  • The alternating flow hydraulics (AFH) had demonstrated the unique features in the past. One of the most well-known inventions was the hydraulic machine-gun synchronizer, which had become the standard equipment of airplane during World War I. The studies on the AFH between 1960 and 1980 had trigged many researchers' interests and reached the summit. The disadvantages of the AFH like low efficiency and cooling difficulty had prevented the further development. Few people are engaged in studying the AFH at present. However, the unique characteristics of the AFH inspire the researchers to continuously explore the new special suitable applications. The overviews of the AFH and the new potential application in the geotechnical testing field have been discussed in this paper. First, the research results of the AFH in the past have been summarized. Then, the classifications of the AFH have been introduced in detail according to the working principle, the number of hydraulic transmission pipelines and the mode of input energy. The advantages and the disadvantages of the AFH have been discussed. A novel potential suitable application in the soil test field has been presented at last. The detailed designing ideas of a new dynamic trixial instrument have been given, which will be a more innovational and energy-saving plan according to the current studies. A series of simulation experiments have been done. The simulation results show that the proposed scheme for the new dynamic trixial instrument is feasible. The paper work will also give some inspirations in the reciprocating motion control system.

Analysis on the Thermal Comfort Aspect of a Locally-Cooled Room in Warm and Humid Environments : PPD-Based Evaluation of Human Responses (중온 고습 환경조건에서 부분적으로 냉방되는 실내의 열쾌적성에 대한 분석 : 인체반응에 대한 PPD 기준의 평가)

  • Kim, Bong-Hun;Seo, Seung-Rok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.41-59
    • /
    • 1998
  • Thermal comfort aspect of a locally-cooled target space in warm and humid environments(typically in the rainy summer season) was studied in view of PPD index. First. theoretical analyses were conducted to examine the effect of the governing parameters(such as air temperature, relative humidity and air velocity, etc.) using a computer model. Secondly, experimental investigations were also performed in a climatic room designed to simulate corresponding thermal conditions of outdoor environments. During the tests, temporal variation of PPD was recorded as functions of climatic variables(outdoor and indoor temperatures, relative humidity and air velocity) for the given human factors(metabolic heat generation and clothing). From both theoretical and experimental investigations, air temperature and air velocity were found to be the most dominant parameters affecting PPD of the target space. Results were summarized as: 1. Relative humidity of the locally-cooled target space tends to approach that of outdoor's as the space is subjected to an ON-OFF mode of cooling, since moisture potential of the two rooms reaches an equalized state as a result of moisture diffusion. 2. It was recognized that changes in relative humidity did not show any significance in view of thermal comfort as was reported in the previous studies, while variations of both temperature and air velocity caused relatively large changes in the degree of thermal comfort. 3. In-door environment should be evaluated in terms of PPD instead of relative humidity commonly recognized as an important climatic variable particularly in warm and humid environments.

  • PDF

CHARACTERISTICS OF THE FAIRCHILD 486 CCD AT MAIDANAK ASTRONOMICAL OBSERVATORY IN UZBEKISTAN (우즈베키스탄 Maidanak 천문대 Fairchild 486 CCD의 기본적인 특성)

  • Lim, Beom-Du;Sung, Hwan-Kyung;Karimov, R.;Ibrahimov, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Understanding of the basic characteristics of an astronomical instrument is a prerequisite to obtaining reliable data from the instrument. We have analyzed more than 1,000 calibration images from the Fairchild 486 CCD (hereafter the Maidanak 4k CCD system) attached to the AZT-22 1.5m telescope at Maidanak Astronomical Observatory in Uzbekistan. The Maidanak 4k CCD system supports three readout modes through 1, 2, or 4 amplifiers. In most cases observers use 4-amplifier readout mode to save time. We have tested the stability and seasonal variation of zero levels and confirm that two quadrants of the images (Amp 1 & 2) show no appreciable seasonal variation. but the other two quadrants (Amp 3 & Amp 4) show an evident seasonal variation in the bias level. The Cryo Tiger, the cooling system used at the Maidanak 4k CCD system, maintains the CCD temperature at -108'E, and effectively suppresses the dark electrons. The mean value versus the variance plot of the flat images does not show the expected relation for an ideal Poisson noise distribution and this is attributed to the large variation in quantum efficiency between different pixels. In addition, we confirm that there is no appreciable difference in gain between readout amplifiers, but there is a large variation in quantum efficiency across CCD chip especially in U. Due to the finite length of shutter opening and closing time, the effective exposure time varies across the science images. We introduce two parameters to quantify the effect of this uneven illumination and present a method to remove these effects. We also present a method to remove the interference patterns appearing in the images obtained with longer wavelength filters and investigate the spatial variation of the point spread function.

An Experimental Study on a Rectangular Parallelepiped Sodium Heat Pipe for High Temperature Class Forming (고온 유리 성형 공정을 위한 직육면체형 Sodium 히트파이프의 실험 연구)

  • Park, Soo-Yong;Boo, Jun-Hong;Kim, Jun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1622-1629
    • /
    • 2002
  • To enhance isothermal characteristics of glass-farming surface, a rectangular parallelepiped heat pipes was fabricated, tested, and analyzed. The working fluid was sodium and the wall material was stainless steel 304. The dimension of the heat pipe was 210 (L) $\times$ 140(W) $\times$ 92(H)mm. A lattice structure covered with screen mesh was inserted to promote return of working fluid. The bottom side of heat pipe was heated electrically and the top side was cooled by liquid circulation. The temperature distribution at the bottom surface was of major concern and was monitored to determine isothermal characteristics. A frozen start-up of rectangular parallelepiped liquid metal heat pipe was tested. The operating mode of the sodium heat pipe was affected by the temperature of cooling zone, input heat flux, and the operating temperature of heat pipe. The heat pipe operated in a normal fashion as long as the heat flux was over 5.78W/cm$^2$, and the inside wall temperature of condenser part was above 95$^{\circ}C$ The maximum temperature difference at the bottom surface was observed to be 32$^{\circ}C$ when the operating temperature of the heat pipe was operating normally around 50$0^{\circ}C$. The result showed that a sodium heat pipe was very effective in reducing significantly the temperature difference in the glass-forming surface.

Liquid Rocket Engine System of Korean Launch Vehicle (한국형발사체 액체로켓엔진 시스템)

  • Cho, Won-Kook;Park, Soon-Young;Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Chul-Woong;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.56-64
    • /
    • 2010
  • A system design has been conducted of the liquid rocket engine for Korean launch vehicle (KSLV-II, Korea Space Launch Vehicle II). The present turbopump-fed liquid rocket engine of vacuum thrust 76 ton and vacuum specific impulse 297 sec adopts gas generator cycle. The combustion pressure of the regeneratively cooled combustor is 60 bar. The propellant is LOx/kerosene. The engine is started by pyrostarter and the combustor is ignited by TEA (TriEthylAluminium). The engine system performance and the subsystems performance requirements are given through energy balance analysis. The combustion pressure, specific impulse and the engine mass are analyzed to be reasonable comparing with the published data. The startup analysis method which will be used in the future has been validated against the turbopump-gas generator coupled test. The tuning method for performance variation of the engine which is not actively controled has been prepared by mode analysis and performance deviation analysis.