• Title/Summary/Keyword: Cooling Jacket

Search Result 73, Processing Time 0.047 seconds

Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center (소형 태핑센터 주축의 열특성 및 주파수 분석)

  • Choi, Dae-Bong;Kim, Soo-Tae;Ro, Seung-Kook;Cho, Hyun-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.

Robust Design of the Mold Oscillator of continuous Casting Machine (연주 설비용 몰드 오실레이터의 강건 설계)

  • Park, Y. T.;Lee, C. S.;Hwang, W.;Kang, G. P.;Shin, G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.782-785
    • /
    • 2002
  • The goal of this research is to deduce the robust design of mold oscillator of the continuous casting machine. In the case of the system operated in the high temperature condition, the structural problems caused by the heat are dominant. Therefore, the thermal stress is considered with the connection of the thermal and structural analyses. The cooling ability of the water jacket was estimated and the robustness of mold oscillator was judged with the displacement and stress distributions obtained by the finite element method. The analytic results were compared with the real values of the iron mill.

  • PDF

Analysis of Temperature Distribution for Spindle Housing according to Shape of Cooling Jacket (냉각자켓 형상에 따른 공작기계 주축 하우징의 온도분포 해석)

  • 최대봉;황주호;강종표;김태형;임경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.615-620
    • /
    • 1996
  • 생산성의 향상을 위하여 공작기계의 고속가공이 필요하고 이를 위한 연구가 상당히 진행되고 있다. 단위 시간당 절삭량을 올리고 알루미늄과 같은 연질 금속의 가공을 위하여 주축을 고속화하는 것이 매우 중요하나, 각 요소간의 마찰로 인한 발열에 의해 베어링의 수명단축이나 열변형 등을 동반하여 정밀도가 떨어지게 된다.(중략)

  • PDF

Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage (수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가)

  • Lee, Jungmin;Park, Jongchul;Koo, Daeseo;Chung, Dongyou;Yun, Sei-Hun;paek, Seungwoo;Chung, Hongsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.

Coupled CFD-FE Analysis Method for IC Engine Cooling Water Jacket under Subcooled Nucleate Boiling Conditions (핵비등 열전달 효과를 고려한 내연기관 냉각수로의 CFD-FE 연성해석 기법)

  • Lee, Myung-Hoon;Kim, Dong-Kwang;Lee, Sang-Kyoo;Rhim, Dong-Ryul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.9-16
    • /
    • 2006
  • The present study is to simulate coolant flow in IC engine cooling passages under subcooled nucleate boiling conditions and investigate thermal stress analysis of the solid part. To consider nucleate boiling heat transfer effect, Chen's empirical formula is used through user subroutine programing in CFD code and then nucleate boiling model is compared with Robinson's experimental results, which shows reasonable agreement. This Chen's nucleate boiling model is applied to single cylinder IC engine model and we do cylinder liner thermal stress analysis using commercial FEM code.

Design and Fabrication of Full-Scale Regenerative Cooling Combustion Chamber (${\varepsilon}$=12) of Liquid Rocket Engine for Ground Hot Firing Tests (지상연소시험용 실물형 재생냉각 연소기(확대비 12)의 설계 및 제작)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Seo, Seong-Hyeon;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.114-118
    • /
    • 2007
  • Design and fabrication of a 30-tonf-class full-scale regenerative cooling combustion chamber of a liquid rocket engine for a ground hot firing test are described. It has chamber pressure of 60 bar and nozzle expansion ration of 12 and manufactured to have a single welded structure of· the mixing head and the chamber. The material of the mixing head is STS316L which has excellent mechanical property in cryogenic condition. The chamber comprise of the cylinder, nozzle throat, and 1st/2nd nozzle parts. The material of the inner jacket is copper alloy/STS329J1/STS316L and that of the outer jacket is STS329J1. The components of· the combustor were manufactured by mechanical processing including lathing, milling, MCT, rolling and pressing. The machined components were integrated to a single body by means of general welding, electron beam welding(EBW), and brazing.

  • PDF

Shape Design of the 3-Way Valve used in Marine Diesel Engines (LDCL JWCS) by CFD Analysis (유동해석을 통한 선박용 디젤엔진(LDCL JWCS)의 3-Way Valve 형상 설계)

  • Hwang, Gi Ung;Kwak, Hyo Seo;Kim, Jae Yeol;Eom, Tae Jin;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1077-1084
    • /
    • 2017
  • Camshaft engines designed for constant engine loads have been applied to existing marine diesel engines. However, due to environmental regulations, electro-hydraulic servo mechanisms, which have a loaddependent cylinder liner jacket water cooling system (LDCL-JWCS), have been recently developed to individually control the temperature of the cylinders depending on the engine load. In this system, the 3-way valve, which prevents low temperature corrosion by reducing the temperature difference between the upper and lower parts of the cylinder, has been employed, but the outlet mass flow of the existing valve is low. In this study, the design of the internal shape of the 3-way valve was performed by analyzing the effects of the design parameters of the valve shape on the performance (i.e., the outlet mass flow rate and temperature). The proposed model was verified by comparing its performance to that of existing marine diesel engine valves.

Comparisons of Life Prediction Method of Copper Alloy of Regenerative Cooling Chamber for Thrust Chamber (액체로켓 연소기 재생냉각 챔버용 구리합금의 피로수명 예측식 비교)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.90-97
    • /
    • 2010
  • A study about the fatigue life of copper alloy which is used in inner jacket of regenerative cooling chamber of liquid rocket engine has been performed. Mechanical properties of the material and fatigue life have been taken from tensile tests and low-cycle fatigue tests at room temperature and several elevated temperatures. Original universal slopes method, modified universal slopes method, Mitchell's method, Baumel and Seeger's method, and Ong's method have been used for predicting the fatigue data. It was found that the novel life prediction method should be developed for the copper alloys since almost all data have not been predicted well with the widely used methods.

THE EFFECTS OF IMPELLER CONFIGURATION ON MIXING AND HEAT TRANSFER IN A STIRRED TANK WITH A HELICAL COOLING COIL (나선형 냉각 코일이 설치된 교반기에서 임펠러 배치가 교반과 열전달에 미치는 영향)

  • Kim I.S.;Song H.-S.;Han S.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.55-59
    • /
    • 2005
  • CFD analysis has been conducted to find the two stage impeller configuration which is the most suitable for a stirred tank with an internal helical cooling coil and a cooling jacket, which is frequently used in chemical industries for highly exothermic reactions ranged from low to medium viscosity. Two typical types of impellers are considered; pitched paddle impellers and Rushton turbine impellers. Interestingly, pitched paddle impellers show a good mixing performance for multi-species, whereas Rushton turbine impellers achieve a good mixing performance for multi-phases. Besides the type of an impeller, the location of an impeller is another important factor to be considered in order to accomplish an effective mixing. The best set of types and locations of two impellers is recommended based on the coefficient of variation(CoV) value and the heat removal capability obtained from CFD results. The former is a measure to quantify the degree of mixing.

  • PDF

Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining (볼스크류 가공용 선회형 스핀들의 발열 특성에 관한 연구)

  • Moon, Hong-Man;Kim, Sang-Won;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.44-51
    • /
    • 2020
  • We studied the heating characteristics of a whirling spindle. This spindle is an important component of a whirling machine for turning a ball screw shaft. In the manufacturing process for a conventional ball screw shaft, a single tool is used to form a spiral in a lathe machine tool. Thereafter, a high-frequency heat treatment process is performed. Recently, a whirling-type cutting method has emerged. This method can perform hard turning in the rotating direction of the spiral portion of the ball screw shaft by rotating and mounting multiple tools. The whirling method can be applied to the heat-treated material. In this study, an experimental apparatus was constructed to analyze the whirling spindle. The experiment proceeded in four steps. The rotating speed of the whirling spindle was set to ISO random and sequential rising conditions. Cooling and non-cooling modes in the cooling jacket were tested. As a result of the above experiment, the heating characteristics of the whirling spindle were derived.