• 제목/요약/키워드: Cooling Down

검색결과 433건 처리시간 0.031초

보론강의 경화능과 인장 특성에 미치는C, Mo, Cr의 영향 (Effects of C, Mo and Cr on Hardenability and Mechanical Properties of Boron-Bearing Steels)

  • 임현석;정우연;황병철
    • 열처리공학회지
    • /
    • 제26권5호
    • /
    • pp.241-247
    • /
    • 2013
  • Hardenability and mechanical properties of boron-bearing steels containing C, Mo and Cr were investigated in this study. Using quench dilatometer, the steel specimens were cooled down to room temperature at different cooling rates to construct continuous cooling transformation diagrams and then the transformation products from austenite were examined. A critical cooling rate was introduced as an index to quantitatively evaluate the hardenability. The C addition to boron-bearing steels did not significantly affect hardenability compared to boron-free steels although it increases the hardenability. With the same content, the Mo addition largely increased the hardenability of boron-bearing steels than the Cr addition because it decreased both the transformation start and finish temperatures at low cooling rates. In particular, the Mo addition completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, whereas the Cr addition nearly suppressed it at the cooling rates above $3^{\circ}C/s$.

Computational Study of the Mixed Cooling Effects on the In-Vessel Retention of a Molten Pool in a Nuclear Reactor

  • Kim, Byung-Seok;Ahn, Kwang-Il;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.990-1001
    • /
    • 2004
  • The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a Pressurized Water Reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure.

가스터빈블레이드에서 일렬의 제트에 의한 막냉각특성 연구 (Film Cooling by a Row of Jets in a Gas Turbine Blade)

  • 이용덕;이재헌
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1851-1865
    • /
    • 1994
  • The objective of the present study is to predict the film cooling effectiveness by a row of holes at various injection ratios and injection angles. Numerical calculations have been performed to investigate the characteristics of flow and temperature distributions in a region near the down-stream of injection hole including the region of adverse pressure gradient. The elliptic turbulent 3-dimensional governing equations with variable thermal properties using the low-Reynolds number k-$\bar{varepsilon}$ model was solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient and secondary vortex in the region near the downstream of injection hole induces large temperature gradent. The $45^{\circ}$ injection has higher averaged film cooling effectiveness than $60^{\circ}$ injection. But neverthless the $90^{\circ}$ injection has greater deviation from a flat plate than $45^{\circ}$ and $60^{\circ}$ injection, the $90^{\circ}$ injection has higher averaged film cooling effectiveness than $45^{\circ}$ and $60^{\circ}$ injection in the region near the downstream of injection hole.

오일 미스트 분사 방법에 따른 연삭특성 (A Study on the Grinding Characteristics according to Oil Mist Supply Method)

  • 허남환;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.254-257
    • /
    • 2002
  • As the large Coolant amount used of a machine holds mass serious trouble recently, an environment pollution is increased, and a machine is conquering large specific gravity in an empty cost plane. It is the stage that must reexamine the parts washing that processing is later with this current way or a problem of a liquid waste treatment back. The environmental problems by using coolant demanded the new cooling methods. As one of them, the studies on the grinding with compressed cold air and oil mist have been done. The cooling method using compressed cold air was effective through going down the temperature of compressed air supplied below -$25^{\circ}C$ and increasing the amount of compressed cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using oil mist newly were suggested. This method can satisfy both cooling effect and lubrication with only small amount of coolant, also have the benefit in the point of decreasing the environmental pollution. This paper focused on analyzing the grinding characteristics of the cooling method using oil mist. The grinding test according to compressed cold air and oil mist supply direction were done.

  • PDF

Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code

  • Hedayat, Afshin
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.953-967
    • /
    • 2017
  • In this paper, a complete station blackout (SBO) or complete loss of electrical power supplies is simulated and analyzed in a downward cooling 5-MW pool-type Material Testing Reactor (MTR). The scenario is traced in the absence of active cooling systems and operators. The code nodalization is successfully benchmarked against experimental data of the reactor's operating parameters. The passive heat removal system includes downward water cooling after pump breakdown by the force of gravity (where the coolant streams down to the unfilled portion of the holdup tank), safety flapper opening, flow reversal from a downward to an upward cooling direction, and then the upward free convection heat removal throughout the flapper safety valve, lower plenum, and fuel assemblies. Both short-term and long-term natural core cooling conditions are simulated and investigated using the RELAP5 code. Short-term analyses focus on the safety flapper valve operation and flow reversal mode. Long-term analyses include simulation of both complete SBO and long-term operation of the free convection mode. Results are promising for pool-type MTRs because this allows operators to investigate RELAP code abilities for MTR thermal-hydraulic simulations without any oscillation; moreover, the Tehran Research Reactor is conservatively safe against the complete SBO and long-term free convection operation.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

변압기 냉각 특성 해석 (Cooling Characteristic Analysis of Transformer's Radiator)

  • 김현재;양시원;김원석;권기영;이민제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1920-1925
    • /
    • 2007
  • A transformer is a device that changes the current and voltage by electricity induced between coil and core steel, and it is composed of metals and insulating materials. In the core of the transformer, the thermal load is generated by electric loss and the high temperature can make the break of insulating. So we must cool down the temperature of transformer by external radiators. According to cooling fan's usage, there are two cooling types, OA(Oil Natural Air Natural) and FA(Oil Natural Air Forced). For this study, we used Fluent 6.2 and analyzed the cooling characteristic of radiator. we calculated 1-fin of detail modeling that is similar to honeycomb structure and multi-fin(18-fin) calculation for OA and FA types. For the sensitivity study, we have different positions(side, under) of cooling fans for forced convection of FA type. The calculation results were compared with the measurement data which obtained from 135.45/69kV ultra transformer flowrate and temperature test. The aim of the study is to assess the Fluent code prediction on the radiator calculation and to use the data for optimizing transformer radiator design.

  • PDF

다기능 솔라윈도우의 열성능 연구 (The Study of Thermal Performance on Solar Window)

  • 조일식;김장회;양윤섭;김병수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in Heating/cooling performance analysis. The reference model of simulation was made up to analysis Heating/cooling performance on Solar Window. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

  • PDF

하나로 냉중성자원 감속재의 냉강에 대한 연구 (A Study on Cooling of the CNS Moderator in HANARO)

  • 박국남;박종학;조만순;최창웅;유성연
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.177-181
    • /
    • 1999
  • Cold Neutron Source(CNS) facility comprises moderator circulation system, helium cooling system, neutron guide and auxiliary sistems. To increase the amount of cold neutron, the thermal neutron should pass cold moderator at cryogenic temperature. As cold moderator in Hanaro, the liquid hydrogen or liquid deuterium will be used and the temperature in operation will be used and the temperature in operation will be maintained to be $250^{\circ}C$ below zero. To maintain the moderator at this cryogenic temperature. He refrigerator is used to cool it down in thermosiphon having natural circulation. As a part of the conceptual design of Hanaro CNS, study on the characteristics of moderators, design of moderator chanmber and cooling method were done through the collaboration of Korea Atomic Energy Research Institute and Petersburg Nuclear Physics Institute. During the collaboration, a program for the design of moderator cooling system design concept through the parametric study using this program. In the parametric study, the effect of the moderator type on the design parameters was investigated. Also, the requirements on the performance test for the cooling system, which will be made before the basic design, were investigated.

  • PDF

수평형 재생증발식 냉방기의 성능시험 (Performance Test for a Horizontal Regenerative Evaporative Cooler)

  • 송귀은;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF