• Title/Summary/Keyword: Cooling Characteristic

Search Result 382, Processing Time 0.023 seconds

An Experimental Study on the Performance Characteristic with Height of a Fin-Tube Liquid Desiccant Dehumidifier (핀-튜브형 액체건조제 제습기의 높이에 따른 성능특성에 관한 실험적 연구)

  • Lee, Su-Dong;Park, Moon-Soo;Chung, Jin-Eun;Lee, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.25-30
    • /
    • 2003
  • Several desiccant cooling systems have been developed in terms of cost and performance. In this study a fin-tube exchanger has been used for liquid desiccant dehumidification system. This dehumidifier has been designed to study the absorption characteristic of the aqueous triethylene glycol(TEG) solution which has the flow range from 20 to 50 LPM. The dehumidifier performance characteristic of working factor variables such as inlet solution flow rate, air flow rate, solution concentration, solution temperature, brine temperature, air temperature and inlet air relative humidity has been analyzed. The result of this experiment can provide useful data for hybrid air conditioning system.

  • PDF

Combustion Characteristics of Sub-scale Combustors on the variation of propellant mass flow and injector arrangement (분사기 배열과 추진제 유량 변화에 의한 축소형 연소기의 연소특성)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seong-Gu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.168-172
    • /
    • 2008
  • Hot firing tests of sub-scale combustors were carried out to study the characteristic velocity according to the variation of propellant mass flow and injector arrangement. Test results show that there exists an effective range of relative flow-rate density on the condition of similar combustion pressure and mixture ratio. Numerical analysis has also revealed that the increase of the distance between the outermost injector array and the cylindrical chamber wall with film cooling increases the region of low mixture ratio near combustion chamber wall and it decreases the characteristic velocity of the combustor. Thus, it was confirmed that these two factors play an important part in improving the performance of LRE combustor on a predetermined chamber pressure.

  • PDF

An Experimental Study on the Cooling and Heating Performance of a Residential Ground Source Heat Pump System (가정용 지열원 열펌프 시스템의 냉난방 성능 특성 연구)

  • Kong, Hyoung Jin;Kang, Sung Jae;Yun, Kyoung Sik;Lim, Hyo Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.156-163
    • /
    • 2013
  • Ground Source Heat Pump (GSHP) systems utilize geothermal energy as a thermal source or sink, for heating, cooling and domestic hot water. It is well known that GSHP is environmentally friendly, and saves energy dramatically. For this reason, many investigative researches have been conducted on commercial and governmental buildings. However, studies on residential GSHP are few, because of the small capacity and cost. In this study, we experimented with the characteristic performance of heating, cooling and seasonal performance factor for a residential GSHP system, which consisted of two 180 m deep u-tube ground heat exchangers, a heat pump and measurement instruments. The installed capacity of the heat pump was 5RT, and the conditioning area was $62.23m^2$. From the experimental results, the cooling COP of the heat pump was 4.13, and the system COP was 3.51, while the CSPF was 3.32. On the other hand, the heating COP of the heat pump was 3.87, and the system COP was 3.39, while the HSPF was 3.39. Also, in-situ cooling COP and capacity were 93.7% and 96.4% compared with the EWT certification data, respectively, and that of heating were 98.3% and 95.7%, respectively.

Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin (휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • Internal heat exchanger (IHX) apparatus using the temperature difference between high and low pressure lines in vehicle air conditioning system is a good method to enhance the cooling performance. In this study, we designed various double-pipe internal heat exchangers which have inner fins between the internal pipe and external pipe. We also measured the performance characteristic (pressure drop, cooling capacity, compressor work and coefficient of performance (COP)) of the modified internal heat exchangers that had the change of the fin height and the inside shape of the internal pipe. This experimental results indicated that the liner and serration type internal heat exchanger was the best cooling performance. In addition, the air conditioning system with the liner and serration type internal heat exchanger showed the improved performances of about 6.4% and 9.2%, respectively, for the cooling capacity and COP.

Design and Performance Test of Cooling-Air Test Equipment for the Environmental Control System in Aircraft (항공기 ECS 냉각공기 시험장비 설계 및 성능 시험)

  • So, Jae-uk;Kim, Jin-sung;Kim, Jae-woo;Kim, Jin-bok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • In this paper, the configuration and design of the test equipment are presented to examine the impact of rapid temperature change in cooling-air that may occur during the operation of the fixed wing aircraft Environmental Control System (ECS) on avionic electronic equipment. At the start of the ECS, the temperature of the air supplied by the aircraft ECS may be increased to 5.0℃ per second. In order to ensure operating of the avionic electronic equipment that is mounted on the aircraft and receives cooling-air from the ECS, testing equipment that can implement the cooling-air characteristic test environment is required. During design of test equipment was verified cooling-air rapid rate of temperature change by performing a thermal/flow analysis, performance of the test equipment implemented was verified by applying an avionic electronic equipment.

A Study on Cooling Characteristic of TMA-Water Clathrate Compound for Low Temperature Latent Heat Storage (저온잠열저장을 위한 TMA-물계 포접화합물의 냉각특성에 대한 연구)

  • Kim, Chang-Oh;Kim, Jin-Heung;Chung, Nak-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2471-2475
    • /
    • 2007
  • Clathrate compound is the material that host in hydrogen bond forms cage and guest is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation. But clathrate compound still had supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. In this study was investigated the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N)$ of 20${\sim}$25 wt% as a low temperature latent heat storage material. And ethanol$(CH_3CH_2OH)$ was added and its cooling characteristics were studied experimentally to restrain supercooling of TMA-water clathrate compound.

  • PDF

Improvement of Gasoline Engine Performance by Modifying the Engine Cooling System (엔진 냉각계 개선을 통한 가솔린엔진의 성능 향상)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In this paper, we investigated the improvement of characteristics of knock, emission and fuel consumption rate by optimizing the location and size of water transfer holes in cylinder head gasket without change of engine water jacket design itself. The cooling system was modified in the direction of reducing the metal temperature in the head and increasing the metal temperature in the block. The optimization of water transfer holes in cylinder head gasket was obtained by "flow visualization test". The water transfer holes were concentrated in front side of the engine in order to reduce thermal boundary layer in the water jacket of No. 2 and No. 3 combustion changer in the cylinder head, which would have a large knock intensity, and increase thermal boundary layer in the water jacket of the cylinder block. When the modified coolant flow pattern was applied as proposed in this paper, the knock characteristic was improved. The spark timing was advanced up to 2$^{\circ}$ in low and middle speed range at a full load. In addition, HC emission at MBT was reduced by 5.2%, and the fuel consumption rate was decreased up to 1% in the driving condition of 2400 rpm and 250 KPa. However, since this coolant flow pattern mentioned in this paper might deteriorate the performance of vehicle cooling system due to the coolant flow rate reduction, a properly optimized point should be obtained. obtained.

  • PDF

Evaluating on Indoor Thermal Environment by Shape and Finishing of Passageway (연결통로의 형태 및 마감에 따른 실내 온열환경 평가)

  • Hong, Jin-Young;Kim, Yu-Jeong;Kim, Hyeon-Jin;Kang, Yujin;Kim, Sumin
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.4
    • /
    • pp.318-324
    • /
    • 2016
  • Recently, pedestrians suffered inconveniences with moving on the next building due to the high-rise buildings. So, the number of passageways is increasing for convenience of pedestrians. Currently, people are paying attention to building energy saving. We anticipated that It increases the cooling load of the building and building energy by a passageway. We chose a passageway for a subject because people are paying attention to building energy saving lately. The purpose of this study was to analyze the indoor thermal environment according to the passageway. We measured temperature of building with passageway using a multifunctional device in order to progress the study. On analysis based on investigation, finishing material and glass area of passageway have an effect on indoor thermal environment. The result shows that the cooling load of building alter depending on characteristic of passageway.

The Improvement of Building Envelope Performance in Existing School Building (기존 학교 건물의 외피 성능 개선 방안에 관한 연구)

  • Bang, Ah-Young;Park, Se-Hyeon;Kim, Jin-Hee;Kim, Young-Jae;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: This study is to investigate the effects of facade insulation and window remodeling of an existing old middle school building on the reduction of energy consumption. Method: To analyze energy performance of building, using DesignBuilder v3.4, building energy simulation tool based EnergyPlus engine. Energy consumption and problem of target building was analyzed based on data and survey. Based on building energy simulations it analyzed the variation of energy demand for the building according to U-value of wall, glazing properties and external shading devices. Result: When insulation of building was reinforced, cooling and heating load was decreased. Glazing properties that minimize cooling and heating energy consumption were analyzed. In conclusion, it is important to choose SHGC and U-value of window fit in characteristic of target building. Setting external blind for cooling load decreases 5%.

Heat Transfer Characteristics on Effusion Plate in Impingement/Effusion Cooling for Combustor (연소실 냉각을 위한 충돌제트/유출냉각기법에서 유출판에서의 열전달특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.435-442
    • /
    • 2000
  • The present study is conducted to investigate the local heat/mass transfer characteristics for flow through perforated plates. A naphthalene sublimation method is employed to determine the local heat/mass transfer coefficients on the effusion plate. Two parallel perforated plates are arranged for the two different ways: staggered and shifted in one direction. The experiments are conducted for hole pitch-to-diameter ratios of 6.0, for gap distance between the perforated plates of 0.33 to 10 hole diameters, and for Reynolds numbers of 5,000 to 12,000. The result shows that the high transfer region is formed at stagnation region and at the mid-line of the adjacent impinging jets due to secondary vortices and flow acceleration to the effusion hole. For flows through the perforated plates, the mass transfer rates on the surface of the effusion plate are about six to ten times higher than for effusion cooling alone (single perforated plate). More uniform and higher heat/mass transfer characteristic is obtained in overall region with small gap between two perforated plates.