• 제목/요약/키워드: Cooled turbine

검색결과 58건 처리시간 0.023초

V8형 TCI 디젤기관의 배출가스저감 및 성능개선에 관한 연구 (A Study on the Emission Reduction and Performance Improvement in a V8 Type TCI D.I. Diesel Engine)

  • 윤준규;임종한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.443-452
    • /
    • 2005
  • The purpose of this study is experimentally to analyze the effects of intake port swirl, injection system and turbocharger on the engine performance and the emission characteristics in a V8 type turbocharger intercooler D.I. diesel engine of the displacement 16.7L, and to suggest the improvement of engine performance. Generally to enhance engine power, TCI diesel engine is put to practically use turbocharged intercooler in order to increase volume efficiency which is cooled boost air. As results of considering the factors of the intake port of swirl ratio 2.25, compression ratio 17.5. re-entrant $8.5^{\circ}$ combustion bowl, nozzle hole diameter ${\phi}0.33{\ast}3+{\phi}0.35{\ast}2$. nozzle protrusion 3.18mm, injection timing BTDC $12^{\circ}CA$ and turbocharger(compressor 0.6A/R+46Trim. turbine 1.0 A/R+57Trim) is the best in the full load in the engine performance and the exhaust characteristics of NOx concentration. Therefore. their factors are appropriated as intake system, injection and turbocharger system.

고성능 비행체 엔진을 위한 분출냉각의 연구동향 (Research Activities of Transpiration Cooling for High-Performance Flight Engines)

  • 황기영;김유일
    • 한국항공우주학회지
    • /
    • 제39권10호
    • /
    • pp.966-978
    • /
    • 2011
  • 분출냉각은 높은 압력과 온도의 가혹한 환경에서 운용되는 고성능 액체로켓과 공기흡입엔진을 위한 가장 효과적인 냉각방법이다. 분출냉각이 적용되는 경우, 연소기 라이너와 터빈 블레이드/베인은 다공질 벽면을 통과하는 냉각재(공기 또는 연료)뿐만 아니라 차단막으로 작용하는 벽면을 빠져나온 냉각재에 의해 냉각된다. 이러한 냉각기술의 실용화는 가용한 다공질 재료의 부재로 인해 제한을 받아왔다. 그러나 금속결합 기술의 발전으로 확산접합과 식각된 얇은 금속판으로 제작한 Lamilloy$^{(R)}$와 같은 다층 기공 구조물이 개발되었다. 그리고 또한 경량 세라믹 매트릭스 복합재료가 개발됨에 따라 분출냉각은 근래 고성능 엔진 냉각을 위한 유망 기술로 여겨지고 있다. 본 논문에서는 분출냉각의 최근 연구동향 및 가스터빈, 액체로켓 및 극초음속 비행체 엔진에 이의 적용사례를 고찰하였다.

V8형 터보차져 인터쿨러 직접분사식 디젤기관의 성능개설에 관한 연구 (A Study on the Performance Improvement in a V8 Type Turbocharged Intercooler D.I. Diesel Engine)

  • 석동현;윤준규;차경옥
    • 에너지공학
    • /
    • 제13권2호
    • /
    • pp.118-127
    • /
    • 2004
  • 본 연구는 배기량이 16.7ι인 V8형 터보차져 인터쿨러 직접분사식 디젤기관에서 흡기포트의 선회유동과 연료분사계 및 과급기가 기관성능 및 배출가스특성에 미치는 영향을 실험적으로 고찰하며 성능을 개선하는데 있다. 일반적으로 기관의 출력을 높이기 위하여 과급기 및 인터쿨러를 장착하여 과급공기를 냉각시켜 과급효율을 더욱 높인 TCI디젤기관이 보편화되고 있다 본 연구의 결과로서 흡기포트의 선회비가 2.25인 경우에서 압축비 17.5, re-entrant 8.5$^{\circ}$ 형 연소실, 노즐분공경 $\Phi$0.33*3+$\Phi$0.35*2, 노즐돌출량 3.18mm, 분사시기 BTDC 12$^{\circ}$CA, 과급기 T042(압축기 0.6A/R+46Trim, 터빈 1.0A/R+57Trim)경우가 기관성능 및 NO$_{x}$ 농도의 배출특성을 고려할 때 운전영역에서 가장 우수하여 흡기포트, 분사계 및 과급기에 대한 각 인자를 적정화할 수 있었다.

충돌형 분사기 형태의 액체로켓엔진용 가스발생기 연소성능시험 (Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine Using an Impinging Injector)

  • 한영민;김승한;문일윤;김홍집;김종규;설우석;이수용;권순탁;이창진
    • 한국추진공학회지
    • /
    • 제8권2호
    • /
    • pp.10-17
    • /
    • 2004
  • 본 논문에서는 액체로켓엔진용 160 kW급 터보펌프의 터빈을 구동하고, 액체산소와 케로신을 추진제로 사용하는 연료 과잉 가스발생기의 설계점 연소성능시험 결과에 대해 논의하였다. 충돌형 F-O-F 분사기로 구성된 헤드부, 물냉각 채널 연소실, torch igniter, turbulence ring 그리고 측정 링을 갖는 가스발생기에 대해 기술하였고, 설계점에서의 연소시험 및 turbulence ring 장착여부. 연소실 길이 변화에 따른 연소시험의 결과들에 대해 기술하였다. 연소시험 결과 가스발생기는 설계점에서 안정된 작동성을 보여주었고. 연소압력 및 온도 등의 성능은 예측치에 근접하는 결과였다. Turbulence ring은 출구에서의 가스온도를 균일하게 분포시켜 효과적인 혼합 장치임을 보여 주었고, 4∼6msec 정도에서의 연소가스 잔류시간은 연소효율에 큰 영향을 주지 않았다. 가스발생기 출구에서의 온도는 공급되는 추진제의 O/F ratio에 따라 매우 민감하게 변화하였다.

주기적인 통과후류가 막냉각되는 평판의 유동장에 미치는 영향(1);압력면과 흡입면에 대한 영향(1) (Effect of Periodic Passing Wake on the Flow Field of a Film-Cooled Flat Plate(I))

  • 국건;이준식;고상근
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1931-1940
    • /
    • 1996
  • The effect of periodic passing wake on the film-coolant flow issuing normally from a flat plate was investigated experimentally. The passing wake was generated by rotating thin circular bars. Depending on the rotational direction the test plate could be simulated as a pressure surface or a suction surface of a gas turbine blade. The phase-averaged velocity components were measured using an X-type hot-wire probe. The Reynolds number based on the free-stream velocity and injection hole diameter was 23, 500 and the velocity ratio which is the ratio of film coolant velocity to free-stream velocity was 0.5. The velocity-triangle induced by the wake was similar to that induced by the one generated at the blade trailing edge. The vertical velocity component induced by the passing wake, which approaches to the suction surface and moves away from the pressure surface, played a dominant role in the variation of the flow field. The variation in the phase-averaged velocity on the pressure surface was greater than on the suction surface, but the turbulence kinetic energy variation on the suction surface appeared larger than on the pressure surface.

터보 냉동기용 핀튜브에 관한 연구 ( I ) - 응축 열전달에 관하여 - (A Study on Finned Tube Used in Turbo Refrigerator( I ) -for Condensation Hear Transfer-)

  • 조동현;한규일;김시영
    • 수산해양교육연구
    • /
    • 제5권1호
    • /
    • pp.31-44
    • /
    • 1993
  • Through the early 1900's, the evolution of the surface condenser was closely tied to the development of steam engine and the turbine. As the chemical and petroleum industries evolved in the 1900's, the use of surface condensers in many different processes. Today, industry uses condensers in many shapes and sizes. The actual condensation process occurs on the outside surface of tubes. The nature of this surface geometry affects the condenser's heat transfer performance. The first condensers were built with plain tubes. As tube manufacturing techniques advanced, manufacturers started making tubes with integral fins. In the 1940's, fin densities were limited to about 600 to 700 fins per meter(fpm) because of manufacturing procedure. Today new manufacturing techniques allow production of tubes with fin densities ranging from 750 to 1600 fpm. The integral-fin tubes investigated in this paper are nominally 19 mm diameter. Eight tubes have been used with trapezodially shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. For comparison, tests are made using a plain tube having the same inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. Betty and Katz's theoretical modelis is used to predict the R-11 condensation coefficient on horizontal integral-fin tubes having 748, 1024 and 1299 fpm. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken at steady state. The observed heat transfer enhancement for the finned and grooved tubes significantly exceeded that to be expected on grounds of increased area. For the eight fin tubes and one plain tube tested, the best performance has been obtained with a tube having a fin density of 1299 fpm, and a fin bight of 1.2mm and 30 grooves.

  • PDF

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008)

  • 한화택;최창호;이대영;김서영;권용일;최종민
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.