• Title/Summary/Keyword: Coolant pump

Search Result 203, Processing Time 0.048 seconds

Flow and Heat Transfer Analysis of Reactor Coolant Pump in Transient Conditions (원자로 냉각재 펌프의 과도 상태의 유동 및 열전달 해석 연구)

  • Hur, N.;Kim, S.;Yoo, K.-P.;Kim, S. T.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.245-251
    • /
    • 1999
  • The structural analysis of a reactor coolant pump(RCP) of a nuclear power plant is very important for the safety assessment of the plant. Accurate boundary conditions for the heat transfer coefficient are required for reliable thermal stress analysis of the pump casing, especially in transient operations of the pump since the coolant properties are largely dependent on operational conditions. In the present study, a 3D mixed flow type coolant pump was modeled from the RCP drawings and analyzed in the steady state and number of transient flow conditions by using a commercial code STAR-CD. From the result of the computation, it is seem that the average heat transfer coefficients for the cases considered are found to be the suggested values of the manufacturer, Westinghouse Energy System. The unevenness in local heat transfer coefficients, however, is found to be considerable so that the use of average heat transfer coefficients in all boundaries might not give reliable thermal stresses.

  • PDF

An Experimental Study on the Heating Performance of Coolant Heat Source Heat Pump System for Zero Emission Vehicles (무공해 자동차용 수열원 히트펌프 시스템의 난방 성능에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.57-62
    • /
    • 2014
  • This study presented the feasibility of a coolant heat-source heat pump system as an alternative heating system for electrically driven vehicles. Heat pumps are among the most environmentally friendly and efficient heating technologies in residential buildings. In various countries, electric mobiles devices such as EV, PHEV, and FCEV, have been mainly concerned with heat pumps for new mobile markets. The experiments herein were conducted for various ambient temperatures and coolant temperatures to reflect the winter season. The system, a coolant heat-source heat pump, consisted of an inside heat exchanger, an outside heat exchanger, a motor driven compressor, an electronic expansion valve, and plumbing parts. For the experimental results, the maximum heating capacity and air discharge temperature are up to 6.3 kW and $62^{\circ}C$ respectively at an ambient temperature of $10^{\circ}C$, and coolant at $10^{\circ}C$. However, at $-20^{\circ}C$ ambient temperature and $-10^{\circ}C$ coolant temperature, conditions were insufficient to warm the cabin as the air discharge temperature was $13^{\circ}C$.

Experimental and numerical investigation on the pressure pulsation in reactor coolant pumps under different inflow conditions

  • Song Huang;Yu Song;Junlian Yin;Rui Xu;Dezhong Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1310-1323
    • /
    • 2023
  • A reactor coolant pump (RCP) is essential for transporting coolant in the primary loop of pressurized water reactors. In the advanced passive reactor, the absence of a long pipeline between the steam generator and RCP serves as a transition section, resulting in a non-uniform flow field at the pump inlet. Therefore, the characteristics of the pump should be investigated under non-uniform flow to determine its influence on the pump. In this study, the pressure pulsation characteristics were examined in the time and frequency domains, and the sources of low-frequency and high-amplitude signals were analyzed using wavelet coherence analysis and numerical simulation. From computational fluid dynamics (CFD) results, non-uniform inflow has a great effect on the flow structures in the pump's inlet. The pressure pulsation in the pump at the rated flow increased by 78-128.7% under the non-uniform inflow condition in comparison with that observed under the uniform inflow condition. Furthermore, a low-frequency signal with a high amplitude was observed, whose energy increased significantly under non-uniform flow. The wavelet coherence and CFD analysis verified that the source of this signal was the low-frequency pulsating vortex under the steam generator.

Performance Evaluation of a Main Coolant Pump for the Modular Nuclear Reactor by Computational Fluid Dynamics (전산해석에 의한 일체형 원자로용 주냉각재 펌프의 성능분석)

  • Yoon Eui-Soo;Oh Hyoung-Woo;Park Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.818-824
    • /
    • 2006
  • The hydrodynamic performance analysis of an axial-flow main coolant pump for the modular nuclear reactor has been carried out using a commercial computational fluid dynamics (CFD) software. The prediction capability of the CFD software adopted in the present study was validated in comparison with the experimental data. Predicted performance curves agree satisfactorily well with the experimental results for the main coolant pump over the normal operating range. π Ie prediction method presented herein can be used effectively as a tool for the hydrodynamic design optimization and assist the understanding of the operational characteristics of general purpose axial-flow pumps.

Study on Improvement of Performance by Optimizing Impeller Shape of a Coolant Pump (쿨런트 펌프 임펠러 형상 최적화를 통한 성능개선에 관한 연구)

  • Gil, Min Hyeong;Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.48-52
    • /
    • 2019
  • A coolant pump is the device that cools processed articles and tools when using cutting, boring, and grinding machine tools and provides cutting oil for distributing or cleansing the cut chip to the worktable, processing position, etc. In particular, it consumes a large proportion of energy in machine tools, so it plays an important role in terms of energy efficiency. The purpose of this research is to optimize the shape of impeller, which directly affects performance improvements, to determine the capacity of the coolant pump. To do so, we carried out a parametric analysis with the geometric shape of the impeller as the input variable.

Prediction of Reactor Coolant Pump Performance Under Two-Phase Flow Conditions (이상유동시 원자로 냉각재 펌프의 성능 예측)

  • Lee, S.;Bang, Y.S.;Kim, H.J.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.179-189
    • /
    • 1994
  • A performance of reactor coolant pump in two-phase flow is examined using the pump geometric conditions and the performance of the pump in single-phase flow. Wall friction loss of the reactor coolant pump in single-phase flow is prdicted using the Truckenbrodt boundary layer theory, and the head loss in two-phase flow is predicted with calculated well friction loss and separation loss coefficients. The analysis results are compared with the Combustion Engineering pump test data. The effect of two-phase multiplier on the peak clad temperature in Loss-of-Coolant Accident is also examined using the RELAP5 and the results indicate the importance of its accuracy.

  • PDF

Complete Characteristic Curve for a Reactor Coolant Pump (원자로 냉각재 펌프의 완전 특성 곡선)

  • Yoo, IlSu;Park, MuRyong;Hwang, SoonChan;Yoon, EuiSoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.5-10
    • /
    • 2012
  • An experimental test facility for the complete characteristics of pumps is constructed at KIMM(Korea Institute of Machinery and Materials). All sensors instrumented in test facility for measuring flow rate, pressure, force and moment are in-situ calibrated by primary method. This paper describes the test facility and test technique of the complete characteristics of pumps, together with an experimental test results for a reactor coolant pump which is designed at KIMM for the first time in Korea. The test results for the mixed-flow type pump of $n_s$=1.425 are presented by three curves: constant head, torque, and speed.

Flow and Heat Transfer Analysis of a Reactor Coolant Pump in Transient Conditions (원자로 냉각재 펌프의 과도 상태의 유동 및 열전달 해석 연구)

  • Hur, N.;Kim, S.;Yoo, K.-P.;Kim, S. T.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.24-30
    • /
    • 2000
  • The structural analysis of a reactor coolant pump(RCP) of a nuclear power plant is very important for the safety assessment of the plant. Accurate boundary conditions for the heat transfer coefficient are required for reliable thermal stress analysis of the pump casing, especially in transient operations of the pump since the coolant properties are largely dependent on operational conditions. In the present study, a 3D mixed flow type coolant pump was modeled from the RCP drawings and analyzed in the steady state and number of transient flow conditions by using a commercial code STAR-CD. From the result of the computation, it is seen that the average heat transfer coefficients for the cases considered are found to be the suggested values of the manufacturer, Westinghouse Energy System. The unevenness in local heat transfer coefficients, however, is found to be considerable so that the use of average heat transfer coefficients in all boundaries might not give reliable thermal stress predictions.

  • PDF