• Title/Summary/Keyword: Coolant pump

Search Result 204, Processing Time 0.022 seconds

Prediction of Hydraulic Performance of a Scaled-Down Model of SMART Reactor Coolant Pump (스마트 원자로냉각재펌프의 축소모형에 대한 수력성능 예측)

  • Kwon, Sun-Guk;Park, Jin-Seok;Yu, Je-Yong;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1059-1065
    • /
    • 2010
  • An analysis was conducted to predict the hydraulic performance of a reactor coolant pump (RCP) of SMART at the off-design as well as design points. In order to reduce the analysis time efficiently, a single passage containing an impeller and a diffuser was considered as the computational domain. A stage scheme was used to perform a circumferential averaging of the flux on the impeller-diffuser interface. The pressure difference between the inlet and outlet of the pump was determined and was used to compute the head, efficiency, and break horse power (BHP) of a scaled-down model under conditions of steady-state incompressible flow. The predicted curves of the hydraulic performance of an RCP were similar to the typical characteristic curves of a conventional mixed-flow pump. The complex internal fluid flow of a pump, including the internal recirculation loss due to reverse flow, was observed at a low flow rate.

Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART (일체형원자로 SMART 냉각재 순환펌프의 전산성능예측)

  • Kim M. H;Lee J. S;Park J. S;Kim J. I;Kim K. K
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.

Design and Test of ASME Strainer for Coolant System of Research Reactor (연구용 원자로 냉각계통의 ASME 스트레이너 설계 및 성능시험)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.24-29
    • /
    • 1999
  • The ASME strainers have been newly installed at the suction side of each reactor coolant pump to get rid of the foreign materials which may damage the pump impeller or interfere with the coolant path of fuel flow tube or primary plate type heat exchanger. The strainer was designed in accordance with ASME SEC. III, DIV. 1, Class 3 and the structural integrity was verified by seismic analysis. The screen was designed in accordance with the effective void area from the result of flow analysis for T-type strainer. After installation of the strainer, it was confirmed through the field test that the flow characteristics of primary cooling system were not adversely affected. The pressure loss coefficient was calculated by Darcy equation using the pressure difference through each strainer and the flow rate measured during the strainer performance test. And these are useful data to predict flow variations by the pressure difference.

  • PDF

The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump (원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안)

  • Hee Chan Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.

VIBRATION SIGNAL ANALYSIS OF MAIN COOLANT PUMP FLYWHEEL BASED ON HILBERT-HUANG TRANSFORM

  • LIU, MEIRU;XIA, HONG;SUN, LIN;LI, BIN;YANG, YANG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.219-225
    • /
    • 2015
  • In this paper, a three-dimensional model for the dynamic analysis of a flywheel based on the finite element method is presented. The static structure analysis for the model provides stress and strain distribution cloud charts. The modal analysis provides the basis of dynamic analysis due to its ability to obtain the natural frequencies and the vibration-made vectors of the first 10 orders. The results show the main faults are attrition and cracks, while also indicating the locations and patterns of faults. The harmonic response simulation was performed to gain the vibration response of the flywheel under operation. In this paper, we present a Hilbert-Huang transform (HHT) algorithm for flywheel vibration analysis. The simulation indicated that the proposed flywheel vibration signal analysis method performs well, which means that the method can lay the foundation for the detection and diagnosis in a reactor main coolant pump.

Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump (원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Jeong-Il;Kim, Ki-Joon
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.5
    • /
    • pp.234-240
    • /
    • 2007
  • As a reactor coolant pump (RCP) is operated in the nuclear power system for a long time, so its surface is continuously contaminated by radioactive scales. In order to maintain for RCP internals, a special chemical decontamination process should be used to reduce the radiation from the RCP surface. In this study, applicable possibility in chemical decontamination for RCP was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process model 3-1 than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 415 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

Evaluation on Safety of Stainless Steels in Chemical Decontamination Process with Immersion Type of Reactor Coolant Pump for Nuclear Reactor (침적식 화학적 제염 공정 시 원자로 냉각재 펌프용 스테인리스강의 안전성 평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Ki-Joon;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.167-174
    • /
    • 2011
  • Due to commercialization of nuclear power, most countries have taken interest in decontamination process of nuclear power plant and tried to develop a optimum process. Because open literature of the decontamination process are rare, it is hard to obtain skills on decontamination of foreign country and it is necessarily to develop proper chemical decontamination process system in Korea. In this study, applicable possibility in chemical decontamination for reactor coolant pump (RCP) was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process with immersion type than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion also increased with increasing cycle numbers.

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Corrosion Damage Behavior of STS 304 and STS 415 for Reactor Coolant Pump during Ultrasonic-Chemical Decontamination Process (원자로 냉각재 펌프용 STS 304와 STS 415의 초음파-화학제염 공정 시 부식 손상 거동)

  • Hyeon, Gwang-Ryong;Park, Jae-Cheol;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.218-223
    • /
    • 2018
  • In this study, we proposed a new ultrasonic-chemical decontamination process for decontaminating radioactive corrosion products during the maintenance of reactor coolant pump (RCP). The actual decontamination process was reproduced in the laboratory. And the corrosion characteristics of stainless steel (STS), constituting the RCP interior parts, were examined. The weight-loss measurment and polarization experiment were carried out in order to determine the corrosion characteristics of STS 304 and STS 415 by repeated decontamination processes. The STS 304 presented a little corrosion damage, which was almost indistinguishable from visual observation. The weight-loss rate of STS 304 was also significantly lower. On the other hand, STS 415 showed severe corrosion damage on its surface, greater weight-loss rate and higher corrosion current density than STS 304.

Optimization of an extra vessel electromagnetic pump for Lead-Bismuth eutectic coolant circulation in a non-refueling full-life small reactor

  • Kang, Tae Uk;Kwak, Jae Sik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3919-3927
    • /
    • 2022
  • This study presents an optimal design of the coolant system of a non-refueling full-life small reactor by analyzing the space-integrated geometrical and electromagnetic variables of an extra vessel electromagnetic pump (EVEMP) for the circulation of a lead-bismuth eutectic (LBE) coolant. The EVEMP is an ideal alternative to the thermal-hydraulic system of non-refueling full-life micro reactors as it possesses no internal structures, such as impellors or sealing structures, for the transportation of LBE. Typically, the LBE passes through the annular flow channel of a reactor, is cooled by the heat exchanger, and then circulates back to the EVEMP flow channel. This thermal-hydraulic flow method is similar to natural circulation, which enhances thermal efficiency, while providing a golden time for cooling cores in the event of an emergency. When the forced circulation technology of the EVEMP was applied, the non-refueling full-life micro reactor achieve an output power of 60 MWt, which is higher than that achievable via the natural circulation method (30 MWt). Accordingly, an optimized EVEMP for Micro URANUS with a flow rate of 4196 kg/s and developed pressure of 73 kPa under a working temperature of 250 ℃ was designed.