• Title/Summary/Keyword: Coolant passage

Search Result 44, Processing Time 0.02 seconds

Coolant Flow Characteristics and Cooling Effects in the Cylinder Head with Coolant Flow System and Local Water Passage (냉각수 공급방식 및 국부적인 물통로의 형상 변화에 따른 냉각수 유동특성 및 연소실 벽면의 냉각효과)

  • 위신환;민영대;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.32-41
    • /
    • 2003
  • For the countermeasure of expected higher thermal load in miller cycle engine, coolant flows in the cylinder head of base engine with several coolant flow methods and drilled hole passages were measured by using PIV technique. And the cooling effect was evaluated by measurements of wall temperatures according to each coolant flow method. It was found that the series flow system was most suitable among the discussed 3 types of coolant flow methods since it had the best cooling effect in cylinder head by the fastest coolant flow velocity It was also found that for drilled water passage to decrease the large thermal load in exhaust valve bridge, nozzle type is more effective compared with round type of water passage, and its size has to be determined according to the coolant flow pattern and velocity in each cylinder.

A Study on Flow Analysis of Model Engine Coolant Flow Passage : Comparison with Experimental Data of Lotus Model and Flow Rate Control (엔진 냉각수 유동통로 모델에 대한 수치해석 : Lotus 모델의 실험 결과와의 비교 및 유량제어)

  • Cho, W.K.;Hur, N.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.17-23
    • /
    • 1995
  • A numerical analysis on engine coolant is made by the use of FVM based general purpose 3 dimensional Navier-Stokes solver, TURB-3D. Numerical solutions are verified by comparison with the experimental data of Lotus model. The results show a good qualitative as well as quantitative comparison. Coolant flow rate control is attempted through adjusting the cross section area of passage base on the results of an original coolant passage. It is concluded from the results that the flow rate control is possible as attempted, and thus can be used in the real engine design.

  • PDF

Computational Approach to Improve Coolant Flow Characteristics for the SI Engine (수치해석적 접근을 통한 불꽃점화 엔진의 냉각수 유동특성 개선)

  • Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3553-3558
    • /
    • 2009
  • This study has been conducted to improve coolant flow pattern in the gasoline engine. Flow field has been calculated for the coolant passage mainly around the exhaust ports and valves. For the original model, a flow stagnant region has existed between exhaust valves of the second cylinder. To improve coolant flow characteristics, coolant passage area has been re-modeled and optimized. Furthermore, for the improved coolant core model, coolant passage under the exhaust manifold has been added to reduce exhaust-gas temperature. It was found that the flow through a gasket plays a critical role for the flow in the cylinder head and around exhaust valves. Finally, coolant flow around exhaust valves and in the cylinder head has been improved in terms of flow rate distribution.

Conceptual Design of Coolant Channel for Sub-scale Combustion Chamber (소형 연소기 냉각 유로 개념 설계)

  • 정용현;조원국;한상엽;류철성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • A numerical heat transfer analysis and the structural analysis were performed for the design of sub-scale combustion chamber's coolant passage. The heat flux through the combustion chamber wall was estimated by 2-D heat transfer analysis of compressible hot gas and the result was applied as a thermal boundary condition of 3-D analysis. The heat flux estimated by the present method agreed well with the experimental correlation and proved to be insensitive to cooling condition. So the same thermal boundary condition was applied for various operating conditions. The maximum temperature of combustion chamber wall was predicted by 3-D analysis for single coolant passage and the result will be used for the development of a regeneratively cooled combustion chamber. Also estimated were the stress distribution and structural safety of coolant passage through the static structural analysis.

Effect of the Configurations of Coolant Flow Passage on the Thermal-Flow Characteristics of Screw Compressor (스크류 압축기 냉각유로 형상 변화가 열유동 특성에 미치는 영향)

  • Cho, Sung-Wook;Seo, Hyeon-Seok;Shon, Kil-Won;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The thermal-flow characteristics of screw compressor were numerically investigated with various geometrical configurations of its coolant flow passage applied to the separate block for enhancing the heat transfer performance of it. The length ratio($L_s/D$=4.8, 5.6, 6.4) and thickness ratio(t/D=0.2, 0.4, 0.6) of the separate block in the flow passage of the water jacket were adopted to design parameters. Results showed that the pressure drop and heat transfer were increased as the length of separate block increases due to the flow separation and centrifugal force. The results were graphically depicted with various flow and geometrical conditions.

Numerical Optimization of the Coolant Flow Rates through Cylinder Head Gasket Holes by applying CFD Techniques (CFD 기법을 이용한 실린더헤드 가스켓홀 통과 유량의 최적화)

  • 백경욱;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.121-128
    • /
    • 2000
  • Simple design methods were developed to control the coolant flow rates through cylinder head gasket holes. Applying the concept of flow through an obstruction the ratio of intake to exhaust side flow rates could be easily controlled while maintaining the flow rates per cylinder of the original model. Flow distribution in the coolant passage of the original model was calculated by CFD and the flow rates at the gasket holes were modified based on the calculation results. The calculated flow rated of the modified gasket holes were reasonably close to target values. For more accurate control of the flow rate distribution, a design method with iterative CFD calculations was also suggested. The final size of gasket holes for the target flow rates were obtained just after a few optimization iterations. These methods can be very useful for the optimization of heat transfer characteristics in engine cylinder head and block.

  • PDF

Analysis of the cooling system for a superconducting generator (초전도발전기의 냉각시스템 해석)

  • Kim, K.W.;Chung, T.E.;Shin, H.-C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.446-453
    • /
    • 1997
  • The superconducting winding in rotor of a superconducting generator should be kept at extremely low temperature of 4-5 K to maintain the superconducting state. For this purpose the liquefied helium is used for the coolant and it is very important to analyze and design a cooling system making effective use of the coolant. In this paper, the typical heat exchanger of a superconducting generator with the flow passage is analyzed with regard to the thermal equilibrium. An experimental constant relevant to the flow condition in the flow passage is determined with heat exchange experiments in cryostat. Also a new heat exchanger with porous material is proposed and designed. Results of the numerical analysis for the temperature distributions for the torque tube and the coolant are reported and the efficiency of the heat exchanger is discussed from the viewpoint of amounts of coolant needed.

  • PDF

Effect of Coolant Flow Passages Between Cylinder Blocks on the Cooling Performance of a Heavy-duty Diesel Engine (실린더 블록 사이의 냉각수 유입홀이 대형 디젤엔진의 냉각성능에 주는 영향)

  • Lee, Sang-Kyoo;Rhim, Dong-Ryul;Lee, Sang-Up;Kim, Min-Jung;Yoo, Seung-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.341-344
    • /
    • 2006
  • In this analytical study on the engine coolant flow of a heavy-duty diesel engine with 4 valves and linear-type 8 liter 6 cylinders, the characteristics of pressure drop and engine cooling performance with the additional coolant passages between cylinder blocks have been investigated. Since the most part of pressure drop is caused by the coolant flow passages inside a cylinder head and cylinder blocks for this type of heavy-duty diesel engines, the advantage of pressure drop is just 2.6% and the characteristics of heat transfer and the distribution of coolant velocities in the head part show little differences in case of additional coolant passages. Thus the coolant flow passages between cylinder blocks make little contribution on the cooling performance of heavy-duty diesel engines

  • PDF

A Numerical Simulation of Flows in an Engine Cooling Passage (엔진 냉각유로 내의 유동에 관한 수치해석)

  • 허남건;윤성영;조원국;김광호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.32-40
    • /
    • 1993
  • Flow fields in model engine cooling passages are studied numerically by using TURBO-3D program, a finite volume based 3-D turbulent flow program adopting a general body fitted coordinate system. The effects of exit position on mass flow rate at each gasket hole are examined for a model cooling passage in order to understand the flow distribution inside the water jacket. The results of the present study can be applied to the design of high performance, high reliability engine.

  • PDF

The thermal & hydraulic analysis of the cooling passage for HTS power cable (초전도케이블 냉각유로의 열 및 유동 특성 해석)

  • 홍용주;염한길;김효봉;고득용
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.167-170
    • /
    • 2003
  • The thermal and hydraulic characteristics of the cooling passage for HTS power cable should be carefully investigated to get the highly reliable and economic operation. In this study, the pressure drop and temperature change of the coolant flowing the corrugated passage was estimated using the simple one-dimensional approach, and the temperature distribution in the radial direction was calculated. The results show the dependency of the mass flow rate, thermal conductivities on the cooling performance of the HTS cable.

  • PDF