• Title/Summary/Keyword: Coolant leakage

Search Result 43, Processing Time 0.029 seconds

Finite Element Analysis for the Contact Behavior in Double-Type Mechanical Face Seals Used for Small Hydro Power Turbine (소수력 터빈용 복수 기계평면시일의 접촉거동에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kang, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.201-208
    • /
    • 2005
  • This paper presents the FEM analysis on the contact behavior characteristics of mechanical face seals in a small hydro-power turbine. Especially, the axial displacement and contact normal stress between a seal ring and a seal seat of a primary sealing unit have been analyzed as functions of rotating speed of a hydro-turbine, sealing gap, water and cooling fluid temperature. Those are strongly related to a leakage of water and wear between a seal ring and a seal seat. The FEM computed results present that the rotating speed of a hydro-turbine may be kept less than 800 rpm, and the sealing gap in a primary sealing unit is restricted $0.5\~5$. The coolant temperature in which is most influential parameter to the contact behaviors of a sealing unit may be kept less than $15^{\circ}C$ for a safe operation of a sealing unit without a leakage and wear.

Development of Inspection Technique for Filling or Unfilling of Containment Liner Plate Backside Concrete in Nuclear Power Plant (원전 격납건물 라이너플레이트 배면 콘크리트 채움 여부 점검 기술 개발)

  • Lee, Jeong Seok;Kim, Wang Bae;Kwak, Dong Ryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2020
  • The Nuclear containment building is a main safety-related structure that performs shielding and conservation functions to prevent highly radioactive materials from leakage to the outside environment in the case of various environmental conditions and postulated accidents. The containment building contains a reactor, steam generator, pressurizer, tank, reactor coolant system, auxiliary system and engineering safety system, and is designed so that highly radioactive materials above the limits specified in 10 CFR 100 do not escape to the outside environment in the case of LOCA(Loss of Coolant Accident) for instance. The containment metal liner plate(CLP) is a carbon steel plate with a nominal plate thickness of 6 mm, which functions as a mold for the wall and dome of the containment building when concrete is filled, fulfills airtightness to prevent leakage of seriously radioactive materials. In recent years, backside corrosion was found on the liner plate in some domestic nuclear power plants. The main cause of backside corrosion was unfilled concrete. In this paper, an inspection technique of assessing filling suitability for CLP backside concrete is developed. Results show that the validity of inspection technique for CLP backside concrete using vibration sensor is successfully verified.

Code Analysis of Effect of PHTS Pump Sealing Leakage during Station Blackout at PHWR Plants (중수로 원전 교류전원 완전상실 사고 시 일차측 열수송 펌프 밀봉 누설 영향에 대한 코드 분석)

  • YU, Seon Oh;CHO, Min Ki;LEE, Kyung Won;BAEK, Kyung Lok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This study aims to develop and advance the evaluation technology for assessing PHWR safety. For this purpose, the complete loss of AC power or station blackout (SBO) was selected as a target accident scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes the main features of the primary heat transport system with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was achieved successfully by running the present model to check out the stable convergence of the key parameters. Subsequently, through the SBO transient analyses two cases with and without the coolant leakage via the PHTS pumps were simulated and the behaviors of the major parameters were compared. The sensitivity analysis on the amount of the coolant leakage by varying its flow area was also performed to investigate the effect on the system responses. It is expected that the results of the present study will contribute to upgrading the evaluation technology of the detailed thermal hydraulic analysis on the SBO transient of the operating PHWRs.

Study on Optimal Welding Processes of Half Nozzle Repair on Small Bore Piping Welds in Reactor Coolant System (원자로냉각재계통 소구경 관통관 용접부 부분노즐교체 예방정비를 위한 최적 용접공정에 관한 연구)

  • Kim, Young Zoo;Jung, Kwang Woon;Choi, Kwang Min;Choi, Dong Chul;Cho, Sang Beum;Cho, Hong Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2018
  • The purpose of this study is to develop a Half Nozzle Repair(HNR) process to prevent the leakage from welds on small bore piping in Reactor Coolant System. The Codes & Standards of tempered bead and design requirements of J-Groove welds are reviewed. Automatic machine GTAW welding and machining equipments are developed to perform HNR process. Single pass welding and overlay welding equipments are conducted in order to obtain the optimal temper bead welding process parameters with Alloy 52M filler wire. Coarse grain heat affected zone(CGHAZ) is formed by rapid cooling rate in heat affected zone after welding. Accordingly, a proper temper bead technique is required to reduce CGHAZ in 1-Layer of welds by 2- and 3-Layers. Mock-up tests show that the developed HNR process is possible to meet ASME Code & Standard requirements without any defect.

An ultra-long-life small safe fast reactor core concept having heterogeneous driver-blanket fuel assemblies

  • Choi, Kyu Jung;Jo, Yeonguk;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3517-3527
    • /
    • 2021
  • New 80-MW (electric) ultra-long-life sodium cooled fast reactor core having inherent safety characteristics is designed with heterogeneous fuel assemblies comprised of driver and blanket fuel rods. Several options using upper sodium plenum and SSFZ (Special Sodium Flowing Zone) for reducing sodium void reactivity are neutronically analyzed in this core concept in order to improve the inherent safety of the core. The SSFZ allowing the coolant flow from the peripheral fuel assemblies increases the neutron leakage under coolant expansion or voiding. The Monte Carlo calculations were used to design the cores and analyze their physics characteristics with heterogeneous models. The results of the design and analyses show that the final core design option has a small burnup reactivity swing of 618 pcm over ~54 EFPYs cycle length and a very small sodium void worth of ~35pcm at EOC (End of Cycle), which leads to the satisfaction of all the conditions for inherent safety with large margin based on the quasi-static reactivity balance analysis under ATWS (Anticipated Transient Without Scram).

Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Lee, Yong-Son;Sul, Il-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.10-20
    • /
    • 2001
  • The leak before break(LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount(approximately 37.9 liters) containing the radioactive material which can activate the radiation detector device installed in near the heat exchanger is assumed. A postulated initial flaw size that can not grow to a critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant.

  • PDF

Thermal Cycling Screening Criteria to RCS Branch Lines in Domestic Nuclear Power Plant (국내 원전 RCS 분기배관에 대한 열피로 선정기준)

  • Park, Jeong Soon;Choi, Young Hwan;Lim, Kuk Hee;Kim, Sun Hye
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.54-60
    • /
    • 2010
  • Piping failures due to thermal fatigue have been widely reported in normally stagnant non-isolable reactor coolant branch lines. Since the thermal fatigue due to thermal stratification was not considered in the piping fatigue design in old NPPs, it is important to evaluate the effect of thermal stratification on the integrity of branch lines. In this study, geometrical screening criteria for Up-horizontal branch lines in MRP-132 were applied to SI(Safety Injection) lines of KSNP 2-loop and WH 3-loop. Some computational fluid dynamic(CFD) analyses on the Reactor Coolant System(RCS) branch lines were also performed to develop the regulatory guidelines for screening criteria. As a result of applying MRP-132 screening criteria, KSNP 2-loop and WH 3-loop SI lines are determined to need further detailed evaluation. Results of CFD analyses show that both valve isolation and amount of leakage through valve can be used as technical bases for the screening criteria on the thermal fatigue analysis.

  • PDF

Sipping Test Technology for Leak Detection of Fission Products from Spent Nuclear Fuel (사용후핵연료 핵분열생성물 누출탐상 Sipping 검사기술)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Young Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.18-24
    • /
    • 2020
  • When a damage occurs in the nuclear fuel burning in the reactor, fission products that should be in the nuclear fuel rod are released into the reactor coolant. In this case, sipping test, a series of non-destructive inspection methods, are used to find leakage in nuclear fuel assemblies during the power plant overhaul period. In addition, the sipping test is also used to check the integrity of the spent fuel for moving to an intermediate dry storage, which is carried out as the first step of nuclear decommissioning, . In this paper, the principle and characteristics of the sipping test are described. The structure of the sipping inspection equipment is largely divided into a suction device that collects fissile material emitted from a damaged assembly and an analysis device that analyzes their nuclides. In order to make good use of the sipping technology, the radioactive level behavior of the primary system coolant and major damage mechanisms in the event of nuclear fuel damage are also introduced. This will be a reference for selecting an appropriate sipping method when dismantling a nuclear power plant in the future.

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.

Effects of superimposed cyclic operation on corrosion products activity in reactor cooling system of AP-1000

  • Mahmood, Fiaz;Hu, Huasi;Lu, Guichi;Ni, Si;Yuan, Jiaqi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1109-1116
    • /
    • 2019
  • It is essential to predict the radioactivity distribution around the reactor cooling system (RCS) during obligatory cyclic operation of AP-1000. A home-developed program CPA-AP1000 is upgraded to predict the response of activated corrosion products (ACPs) in the RCS. The program is written in MATLAB and it uses state of the art MCNP as a subroutine for flux calculations. A pair of cyclic power profiles were superimposed after initial full power operation. The effect of cyclic operation is noticed to be more prominent for in-core surfaces, followed by the primary coolant and out-of-core structures. The results have shown that specific activity trends of $^{56}Mn$ and $^{24}Na$ promptly follow the power variations, whereas, $^{59}Fe$, $^{58}Co$, $^{99}Mo$ and $^{60}Co$ exhibit a sluggish power-following response. The investigations pointed out that promptly power-following response of ACPs in the coolant is vital as an instant radioactivity source during leakage incidents. However, the ACPs with delayed power-following response in the out-of-core components are perceived to cause a long-term activity. The present results are found in good agreement with those for a reference PWR. The results are useful for source term monitoring and optimization of work procedures for an innovative reactor design.