• 제목/요약/키워드: Cool thermal storage

검색결과 21건 처리시간 0.028초

빙축열 에어컨의 동적 사이클 해석 (Dynamic Analysis of Cool Thermal Storage Air Conditioning System)

  • 고재윤;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제28권1호
    • /
    • pp.65-74
    • /
    • 2008
  • In this study, dynamic characteristics analysis of AC system is investigated using a cool thermal storage system. A analysing program for cool thermal storage AC system is developed. The performances are studied by several variables and dynamic characteristics. Comparing the result at conventional operation condition with that at the condition using ice storage system, this study showed the effects of the sub cooled degree, superheated degree, efficiency of compressor and evaporating temperature. At the condition using thermal storage system, the thermal storage process was operated during midnight being not needed the cooling of the AC unit through the continuous running of the condenser. The refrigerant was sub-cooled using stored energy after being discharged from the air source condenser during the daytime. The COP was increased owing to the sub-cooling of refrigerant during daytime, thus the power consumption was effectively decreased.

LNG 저장탱크 종합 열유동 해석프로그램 개발 (Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks)

  • 김호연;최성희;이정환;박영;하종만;주상우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.683-688
    • /
    • 2001
  • Cryogenic LNG(Liquefied Natural Gas) which is stored in the cylindrical storage tanks of $100,000m^{3}$ has very complex flow phenomena and the changes of thermal properties with exterior conditions and operation mdoes. These complex thermofluid behaviors are affected by the storage, exterior conditions of LNG, design specifications and heat transfer characteristics of tanks, Also, those have influence on the stable storage and supply of LNG in the storage tanks. Thus this study performed the analysis on the 2-D heat transfer of the tank with exterior conditions, on the Cool Down Process in order to cool down the LNG Storage Tank at the initial normal state, and on the Filling Process considered for incoming and rising of LNG. The analysis on the Mixing LNG Storage was studied too. At last, the visualized program on the complex thermofluidodynamic analysis was developed on the basis of the above analyses. The development of this program becomes to be used to the basic design of the commercial tanks as well as to assure technical skill of the analysis on the thermal stability of the stored LNG in the LNG Storage Tank.

  • PDF

A Numerical Study on Operating Characteristics of a Miniature Joule-Thomson Refrigerator

  • Hong, Yong-Ju;Park, Seong-Je;Choi, Young-Don
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.41-45
    • /
    • 2010
  • Miniature Joule-Thomson refrigerators have been widely used for rapid cooling of infrared detectors, optoelectronic device, and integrated circuits of micro electronics. The typical J-T refrigerator consists of the recuperative heat exchanger with the double helical tube and fin configuration, J-T nozzle, a mandrel, Dewar and a compressed gas storage bottle. In this study, to predict the thermodynamic behaviors of the refrigerator with a compressed gas storage bottle during the cool-down time, numerical study of transient characteristics for a J-T refrigerator was developed. A simplified transient one.dimensional model of the momentum and energy equations was simultaneously solved to consider the thermal interactions of the each component of the refrigerator. To account for effects of the thermal mass of the solid, the heat capacities of the tube, fins, mandrel and Dewar are considered. The results show the charged gas pressure of the gas storage bottle has significant effects on the performance of the J-T refrigerator. At the elevated gas pressure of the gas storage bottle, the large capacity of the compressed gas storage does not need to get the fast cool-down performance of the J-T refrigerator in the cool-down stage.

LNG 저장탱크의 종합 열유동 해석프로그램 개발 (Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks)

  • 김호연;최성희;박영;이정환;윤익근;김동혁;하종만;주상우
    • 한국가스학회지
    • /
    • 제5권2호
    • /
    • pp.52-61
    • /
    • 2001
  • [ $100,000m^3$ ] 규모의 원통형 탱크에 저장되어 있는 초저온의 액화천연가스는 외부조건 및 운전모드에 따라 복잡한 유동양상과 열물성 변화를 보인다. 이런 현상은 LNG의 저장 및 운전조건과 탱크의 설계사양 및 열전달 특성에 크게 영향을 받으며, 또한 저장탱크내 LNG의 안정적 저장 및 공급에 영향을 미치게 된다. 따라서, 본 연구에서는 LNG 저장탱크의 외부조건에 따른 2차원 열전달 해석, 시운전시 초기 상온상태의 LNG 저장탱크를 냉각하기 위한 Cool Down 프로세스, 그리고 탱크내 LNG의 유입 및 상승을 고려한 주입프로 세스의 해석을 수행하였다. 또한, 혼합 LNG 저장에 대한 해석도 수행하였다. 이런 LNG저장탱크내의 전반적인 열유동에 대한 해석을 토대로 가시화된 종합적인 열유동 해석프로그램을 개발하였다. 본 프로그램의 개발은 탱크내 저장된 LNG의 열적 안정성 해석의 기술력 확보뿐만 아니라 실탱크의 기본설계에 이용할 수 있게 되었다.

  • PDF

RESULTS OF THERMAL CREEP TEST ON HIGHLY IRRADIATED ZIRLO

  • Quecedo, M.;Lloret, M.;Conde, J.M.;Alejano, C.;Gago, J.A.;Fernandez, F.J.
    • Nuclear Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.179-186
    • /
    • 2009
  • This paper presents a thermal creep test under internal pressure and post-test characterization performed on high burnup (68 MWd/kgU) ZIRLO. This research has been done by the CSN, ENRESA, and ENUSA in order to investigate the behavior of advanced cladding materials in contemporary PWRs at higher burnup under dry cask storage conditions. Also, to investigate the hydride reorientation, the cool-down of the samples after the test has been done in a coordinated manner with the internal pressure. The creep results obtained are consistent with the expected behavior from reference CWSR material, Zr-4. During the test, the material retained significant ductility: one specimen leaked during the test at an engineering strain of the tube section of 17%; remarkably, the crack closed due to de-pressurization. Although significant hydride reorientation occurred during the cool-down under pressure, no specimen failed during the cool-down.

포접화합물을 이용한 축냉시스템에 대한 이론적 해석 (Theoretical analysis on the cool storage system using clathrates)

  • 정재동;정인성;유호선;이준식
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.343-353
    • /
    • 1997
  • This paper presents a theoretical model for predicting transient behaviors during storage process of the cool storage system using the R141b clathrate. Introduction of the lumped capacitance method along with a brine reservoir having large thermal capacity yields a set of simplified energy equations. Based on the Arrhenius equation and the known experimental findings, the formation rate of clathrate for which the degree of subcooling is properly accounted is newly developed. An effective nondimensionalization of the model equations facilitates the closure of modeling as well as parametric study. Calculated results for a specific case not only simulate a typical pattern of temperautre variation in the tank successfully, but also agree reasonably well with available data. The effect of each characteristic parameter on the system performance is also investigated. It is revealed that the dominant among relevant parameters are the activation energy of reaction, the degree of subcoling and the initial mass fraction of refrigerant. Finally, the uncertainty associated with modeling of the shaft work variation appears to need further studies.

  • PDF

저온공조용 잠열 축열조의 열전달 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer Characteristics in the LHSS for Cool Thermal Air Conditioning)

  • 서인호;고재윤;이채문;임장순
    • 태양에너지
    • /
    • 제20권3호
    • /
    • pp.11-19
    • /
    • 2000
  • In this study, the basic data which were required for development of LHSS(latent heat storage system) were experimentally obtained. Experiments were carried out under the following conditions. The initial temperatures of P.C.M. which were used by parameter is $5^{\circ}C,\;9^{\circ}C$ and $14^{\circ}C$. The conditions of working fluid are $-6^{\circ}C,\;-4^{\circ}C$, and $65{\ell}$/min.. The pure water of which the freezing point is $0^{\circ}C$ was filled in the system, and the Ethylene glycol(brine) was circulated through the 10 vertical tubes as a secondary fluid in order to cool the P.C.M. down. The inlet temperature of the secondary fluid and the initial temperature of the water were varied to investigate the effects of the important design parameters. The phenomenons of temperature conversion of P.C.M. were appeared for the conductive heat transfer and free convective heat transfer by buoyancy force in this storage unit system. In order to find the effective water circulation path, we obtained P.CM. temperature distributions of 5 parts in the storage tank during freezing process.

  • PDF

에어컨 온도상승에 따른 온열쾌적성 변화에 관한 연구 (Research on Thermal Comfort by Increasing Air Conditioner Temperature)

  • 김형철;금종수;김동규;정용현
    • 수산해양교육연구
    • /
    • 제18권2호
    • /
    • pp.77-84
    • /
    • 2006
  • This research evaluates thermal comfort by comparing the case of maintain cooing temperature of room with the case of raising it at the point of time that human body begins to adapt. An experiment uses constant temperature & humidity chamber 2 places. Pretesting room make up summer season environment, the testing room control by air-conditioner. In condition that maintain temperature of $33^{\circ}C$. The subjects stay in the pretesting room during the 30 minute for the heat storage amount of the normal summertime. The subjects stay in the testing room under each case (case 1: maintaining $24^{\circ}C$, case 2: maintaining $26^{\circ}C$, case 3: up $1^{\circ}C$ after maintaining $24^{\circ}C$ during 30 minute, case 4: up $1^{\circ}C$ after maintaining $26^{\circ}C$ during 40 minute). 1. Result of comparison of case 1 and case 2 appears that thermal sensitive vote examine from slight cool to cool and thermal comfort examine slight comfort by temperature rise at human body adaptation point of time.2. Test of case 3 and case 4 appear similar value at thermal sensitive vote and thermal comfort.3. Through the case 2 and case 4, continuous thermal comfort maintain at $24^{\circ}C$, if raise $26^{\circ}C$, same thermal comfort maintain after a human body adaptation temperature rising effect bring energy saving.

실험을 통한 BIPV/T 시스템 성능분석-1. PV 발전효율 (Performance Analysis of the BIPV/T system by the performance Test- Part1. PV efficiency)

  • 이현주;조혜진
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.445-450
    • /
    • 2012
  • BIPV/T (Building Intergrated PhotoVoltaic/Thermal) is combined system produces electricity and thermal energy. The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. The efficiency of the PV system's performance will raise by the system removes heat from the PV. The test system is installed to top floor of the experimental house in the KEPCO Research Institute. The planned experiment is following. (1) Supplying heat energy to top floor. (2) Supplying heat and cool energy to thermal storage in the bottom of the top floor. (3) Supplying heat energy to EHP for improved performance. The experimental performance is executed from 13th February to 13th March, 2012. The solar generation of electricity is 4.04kWh under the horizontal solar radiation is $1000W/m^2$ and the air temperature is $25^{\circ}C$.

  • PDF

도시가로공간의 공공디자인 개선사업에 따른 열환경 개선 효과 평가 (Evaluation of Thermal Environment Improvement Effect from Public Design Improvement Project on the Urban Street Space)

  • 백상훈;시미즈아키;김학윤;정응호
    • 한국환경과학회지
    • /
    • 제20권9호
    • /
    • pp.1105-1114
    • /
    • 2011
  • In this study, thermal environment improvements throughout public design improvement project on the urban street space were compared and evaluated. Thermo-Render 3.0, 3D-CAD based thermal environment simulation program, had been used for thermal environment improvement evaluations. Followings are the results. First, clayey blocks which have low heat transfer rate and cool island effect by trees and roof gardens brought cooling effects for buildings and surface of streets. Seconds, MRT values showed low levels because of low radiant mulching materials. Thirds, roof gardens contributed to reduce heat island effect since HIP levels were affected by decreasing heat storage effect of buildings from roof gardens. As a result, reducing heat storage effect throughout selecting and arranging proper materials which would not increase heat island potentials should be performed to improve heat island effects.