• Title/Summary/Keyword: Cool temperature

Search Result 558, Processing Time 0.023 seconds

Comparison of Diploid and Haploid Plants for Cool Temperature and Short - day in Nicotiana tabacum L. (연초의 이배체와 반수체의 저온단일 감응성 비교)

  • 정윤화;금완수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.108-112
    • /
    • 1994
  • Response of two ploidy levels to cool temperature and short day treatment were investigated under controlled conditione of Phytotron. The haploid and diploid of seven genotypes were started and grown to the 8- leaf stage in the greenhouse. They were treated during 15 and 20 days to 8- hour photoperiods at 18$^{\circ}C$ in controlled - environmental room to induce premature flowering, respectively. Diploid plants of seven genotypes flower later than their haploid plants at 20 days treatment. But under 15 days treatment, diploid plants of NC82, Hicks, BY4, NC2326 and Coker86 were not different from their haploid plants for days to flower. Diploid plants of seven genotypes developed the same number of leaves as their haploid plants at 20 days treatment. Under 15 days treatment, diploid plants of Coker347 and NC95 developed more leaves per plant than their haploid plants. Correlation coefficient between the ranks of leaves per plant of seven genotypes at two ploidy levels was 0.964 and 0.929 at 15 and 20 days treatment, respectively.

  • PDF

Evaluating Changing Trends of Surface Temperature in Winter according to Rooftop Color using Remotely Sensed Thermal Infrared Image (원격 열화상을 이용한 지붕색상별 겨울철 표면온도 변화추세 비교 평가)

  • Ryu, Taek Hyoung;Um, Jung Sup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.1
    • /
    • pp.27-37
    • /
    • 2013
  • A roof surface temperature monitoring, utilizing remotely sensed thermal infrared image has been specifically proposed to explore evidential data for heating load in winter by cool roof. The remotely sensed thermal infrared image made it possible to identify area-wide patterns of changing trends of surface temperature according to rooftop color (white, black, blue, green) which cannot be acquired by traditional field sampling. The temperature difference of cool roof having a higher solar reflectance were ranged from $3^{\circ}C$ up to $9^{\circ}C$, compared to the general roofs. It is confirmed that there is a significant potential to the energy saving by introducing the cool roof in a Korean climate since up to $18.46^{\circ}C$ difference in cool roof, compared to the general roofs in summer were already identified in Seoul, South Korea. It is anticipated that this research output could be used as a valuable reference in identifying heating load in winter by cool roof since an objective monitoring has been proposed based on the area-wide measured, fully quantitative performance of remotely sensed thermal infrared image.

Physiological responses and subjective sensation of human body wearing Cool Mapsi in air-conditioning environment (냉방환경에서 쿨맵시 착용에 따른 생리적 반응과 주관적 감각)

  • Kang, Noo-Ri;Na, Young-Joo
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.359-370
    • /
    • 2010
  • The purpose of this study is to test the performance of the recommended summer dressing for office man through the analysis of skin temperature changes by air-conditioning temperature. We tested two clothing combinations; formal wear with necktie and casual shirts without necktie as for Cool mapsi. 4 male subjects sat to stabilize for thirty minutes after entering artificial-climate chamber with both temperature of $25^{\circ}C$, $27^{\circ}C$ and $50{\pm}10%$ R.H. And during 60 minute experiments of simulating office work, the subjective feelings including thermal, humidity and comfort sensation, skin temperature, clothing humidity and sweat amount were measured at the equal intervals. The result is that formal wear of $25^{\circ}C$ and Cool mapsi of $27^{\circ}C$ show good values such as low skin temperature, low clothing humidity and neutral thermal sensation. And Cool mapsi of $25^{\circ}C$ shows the risk of low rectal temperature for long and static energy level of office work. Formal wear of $27^{\circ}C$ shows high values of mean skin temperature, clothing humidity and thermal sensation. Second experiment was to find the ambient temperature when the subject wearing formal wear shows the skin temperature corresponding to which he shows on Cool mapsi of $27^{\circ}C$. The air-conditioning temperature on wearing formal wear has to be $2^{\circ}C$ lower to produce the corresponding skin temperature to which shows on wearing Cool mapsi of $27^{\circ}C$. Therefore it is possible to increase room temperature to $27^{\circ}C$, when wear Cool mapsi for summer office, for skin temperature and thermal sensation are produced the same.

  • PDF

Observation on the Ignition Delay Time of Cool and Thermal Flame of n-heptane/alcohol Blended Fuel at Low Temperature Combustion Regime (저온연소조건에서 n-heptane/alcohol 혼합연료의 냉염과 열염에 대한 착화지연 관찰)

  • Song, Jaehyeok;Kang, Kijoong;Ryu, Seunghyup;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.12-20
    • /
    • 2013
  • The ignition delay time is an important factor to understand the combustion characteristics of internal combustion engine. In this study, ignition delay times of cool and thermal flame were observed separately in homogeneous charge compression ignition(HCCI) engine. This study presents numerical investigation of ignition delay time of n-heptane and alcohol(ethanol and n-butanol) binary fuel. The $O_2$ concentration in the mixture was set 9-10% to simulate high exhaust gas recirculation(EGR) rate condition. The numerical study on the ignition delay time was performed using CHEMKIN codes with various blending ratios and EGR rates. The results revealed that the ignition delay time increased with increasing the alcohol fraction in the mixture due to a decrease of oxidation of n-heptane at the low temperature. From the numerical analysis, ethanol needed more radical and higher temperature than n-butanol for oxidation. In addition, thermal ignition delay time is sharply increasing with decreasing $O_2$ fraction, but cool flame ignition delay time changes negligibly for both binary fuels. Also, in high temperature regime, the ignition delay time showed similar tendency with both blends regardless of blending ratio and EGR rate.

The Visual Temperature of Textile (원단의 시각적 온도감)

  • Oh, Jiyeon;Park, YungKyung
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.155-164
    • /
    • 2018
  • The temperature is a sense that can be felt by touch and sight. However, the concept of the temperature sensation is rarely used together with the concept of visual sensation and tactile sensation. In this study, the sensation of the temperature sensed through tactile and visual sense was investigated by the visual temperature depending on color and material characteristics. The textile was selected as a sample that could include color and material characteristics. The textile sample was composed of each 15-16 kinds of Yellow, Red, Blue, and Green of total 90 samples. The analytical method was to analyze first, the warm-cool of the colors of Yellow, Red, Blue, Green, and then to the visual temperature according to visual classification and tactile classification. And we investigated the correlation of the visual temperature depending on weight, thickness, and unevenness. As a result, the number of textiles felt by Cool and Warm differed according to the warm-cool of the colors feeling in the same textile. However, the visual temperature was different to each classification of textile. In particular, it was noticeable in thin, see-through and matte textiles. In relation to weight, thickness, unevenness and the visual temperature, the textile classification related to the weight is a classification of a hard, matte textile, and the textile classification related to the thickness is a thin, see-through textile.

A Study on Curing Methods for Concrete Pavement on Early Strength Development in Cool Weather Condition (저온 환경에서 콘크리트 포장의 강도발현 촉진을 위한 양생방법 연구)

  • Ryu, SungWoo;Kim, JinHwan;Hong, SeungHo;Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.11-18
    • /
    • 2017
  • PURPOSES : This study investigates the effect on concrete pavement accordance with the curing methods in cool weather and supports the best method in the field. METHODS : Two field tests evaluated the curing methods of concrete pavement in cool weather. Firstly, five curing methods were tested, including normal curing compound, black curing compound, bubble sheet, curing mat, and curing mat covered with vinyl. Concrete maturity was compared from temperature data. Secondly, normal curing compound and curing mat with vinyl, which showed the best performance, were compared in terms of maturity and join condition index. RESULTS:From the field tests, it is an evident that curing mat with vinyl accelerated the concrete strength. Therefore, it is possible to conduct saw-cut works in cool weather, which minimizes damage on concrete at joint. CONCLUSIONS : For concrete pavement in cool weather, using curing mat with vinyl as the curing method could overcome the strength delay. Therefore, strength and durability problems on concrete at joint due to cool weather would be fewer in the future.

Spatio-Temporal Changes in Seasonal Extreme Temperature Events in the Republic of Korea (우리나라 사계절 극한기온현상의 시.공간적 변화)

  • Choi, Gwangyong
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.4
    • /
    • pp.489-508
    • /
    • 2014
  • The purpose of this study is to clarify the spatio-temporal patterns of changes in seasonal extreme temperature events in the Republic of Korea based on daily maximum and minimum temperature data sets observed at 61 weather stations for the recent 40 year period (1973~2012). According to analysis of regional average data, in spring increases of warm days are most distinct, while in summer reductions of cool nights and increases of warm nights are most noticeable. The similar patterns to those in summer are observed in fall, while in winter reductions of cool days and nights are notable. Regardless of the magnitude of urbanization, changes in nighttime extreme temperature events prevail in transitional periods between seasons, while those in daytime extreme temperature events do so only in particular months. In contrast, cool days in spring and summer, warm days in summer and warm nights in winter do not show any statistically-significant changes at most of stations. The sensitivity of seasonal extreme temperature events to increases of seasonal average extreme temperature is greatest in the case of warm days ($+6.3days/^{\circ}C$) and cool nights ($-6.2days/^{\circ}C$) in spring, warm nights ($+10.4days/^{\circ}C$) and days ($+9.5days/^{\circ}C$) in summer, warm days ($+7.7days/^{\circ}C$) in fall, and cool nights ($-4.7/^{\circ}C$) in winter, respectively. These results indicate that changes in seasonal extreme temperature events and their sensitivity to changes in seasonal climate means under a warmer climate are occurring with seasonally and diurnally asymmetric magnitudes in Korea due to complex climate feedbacks.

  • PDF

Comparison of Rooftop Surface Temperature and Indoor Temperature for the Evaluation of Cool Roof Performance according to the Rooftop Colors in Summer: Using Thermal Infrared Camera Mounted on UAV (옥상 색상에 따른 쿨루프 성능평가를 위한 여름철 옥상 표면 및 실내온도 비교 분석 : 무인항공기에 장착된 열적외선 카메라를 이용하여)

  • Lee, Ki Rim;Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • The intensity and the number of days of high temperature occurrence are also high and record heat occurred. In addition, the global warming phenomenon is intensifying globally, and especially in South Korea, the urban heat island phenomenon is also occurring due to rapid urbanization due to rapid industrial development. As the temperature of the city rises, it causes problems such as the comfort of the residential living and the cooling load. In this study, the cool roof performance is evaluated according to the roof color to reduce these problems. Unlike previous studies, UAV(Unmanned Aerial Vehicle) thermal infrared camera was used to obtain the surface temperature (white, grey, green, blue, brown, black) according to the rooftop color by remote sensing technique. As a result, the surface temperature of white color was $11{\sim}20^{\circ}C$ lower than other colors. Also air conditioning temperature of white color was $1.5{\sim}4.4^{\circ}C$ lower than other colors and the digital thermometer of white color was about $1.5{\sim}3.5^{\circ}C$ lower than other colors. It was confirmed that the white cool roof performance is the best, and the UAV and the thermal infrared camera can confirm the cool roof performa.

Characteristics of the Underground Atmosphere

  • Haast, J.
    • Journal of the speleological society of Korea
    • /
    • no.8
    • /
    • pp.55-64
    • /
    • 1998
  • Many of the familiar roadside signs advertising caves open to the public carry the phrase, “Come underground and cool off”. This is reasonable advice, for during the heat of summer the temperature of these caves is indeed pleasantly cool. If the principal tourist season were in the winter instead of the summer, however, the signs would probably read, “Come underground and warm up”, for in winter these same caves are far warmer than the surface. Cave temperatures are nearly constant throughout the year.

  • PDF

Viscoelastic analysis of residual stresses in a unidirectional laminate

  • Lee, Sang Soon;Sohn, Yong Soo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.383-393
    • /
    • 1994
  • The residual stress distribution in a unidirectional graphite/epoxy laminate induced during the fabrication process is investigated at the microstress level within the scope of linear viscoelasticity. To estimate the residual stresses, the fabrication process is divided into polymerization phase and cool-down phase, and strength of materials approach is employed. Large residual stresses are not generated during polymerization phase because the relaxation modulus is relatively small due to the relaxation ability at this temperature level. The residual stresses increase remarkably during cool-down process. The magnitude of final residual stress is about 80% of the ultimate strength of the matrix material at room temperature. This suggests that the residual stress can have a significant effect on the performance of composite structure.