DOI QR코드

DOI QR Code

Evaluating Changing Trends of Surface Temperature in Winter according to Rooftop Color using Remotely Sensed Thermal Infrared Image

원격 열화상을 이용한 지붕색상별 겨울철 표면온도 변화추세 비교 평가

  • Ryu, Taek Hyoung (Dept. of Spatial Information Science, Kyungpook National University) ;
  • Um, Jung Sup (Dept. of Geography, Kyungpook National University)
  • Received : 2013.02.01
  • Accepted : 2013.03.26
  • Published : 2013.03.31

Abstract

A roof surface temperature monitoring, utilizing remotely sensed thermal infrared image has been specifically proposed to explore evidential data for heating load in winter by cool roof. The remotely sensed thermal infrared image made it possible to identify area-wide patterns of changing trends of surface temperature according to rooftop color (white, black, blue, green) which cannot be acquired by traditional field sampling. The temperature difference of cool roof having a higher solar reflectance were ranged from $3^{\circ}C$ up to $9^{\circ}C$, compared to the general roofs. It is confirmed that there is a significant potential to the energy saving by introducing the cool roof in a Korean climate since up to $18.46^{\circ}C$ difference in cool roof, compared to the general roofs in summer were already identified in Seoul, South Korea. It is anticipated that this research output could be used as a valuable reference in identifying heating load in winter by cool roof since an objective monitoring has been proposed based on the area-wide measured, fully quantitative performance of remotely sensed thermal infrared image.

원격 열화상으로 관측된 지붕표면 온도 분포 자료를 활용하여 쿨루프(Cool Roof)에 기인한 겨울철 난방부하에 대한 근거 자료를 확보하는 것이 본 연구의 목적이다. 원격 열화상은 지붕색상(흰색, 검은색, 청색, 녹색)에 따른 지붕표면 온도의 광역 분포패턴을 가시적으로 제시하였는데, 이는 사람의 눈으로 볼 수 있는 범위에 국한된 데이터만을 제시하는 현지조사와는 확연히 다른 특성을 보여주었다. 겨울철에 높은 태양 반사율을 갖는 쿨루프의 표면 온도는 일반 지붕에 비해 $3^{\circ}C{\sim}9^{\circ}C$ 정도 낮은 것으로 확인되었다. 쿨루프가 여름철에 일반지붕과 비교해서 $18.4^{\circ}C$ 정도 낮은 표면온도를 보여주었기 때문에 겨울철에 쿨루프로 인해 감소된 온도가 여름철에 비해 현격하게 낮아 쿨루프가 한국의 기후조건에서 상당한 잠재력이 있다는 것이 확인되었다. 본 연구는 원격 열화상을 이용하여 광역 열분포를 정량적으로 제시하였기 때문에 쿨루프로 인한 겨울철 난방 부하를 객관적으로 검증하는 과정에서 중요한 참고 자료로 사용될 수 있을 것이다.

Keywords

References

  1. Ahn, T. K., 2003, Evaluation for thermal performance of apartment house top floor using roof planting system, the korean society of living environmental system, 10(3), pp. 182-186.
  2. Akbari, H., 1998, Cool roofs save energy, ASHRAE Transactions, 104(1B), pp. 783-788.
  3. Akbari, H., Pomerantz, M., Taha, H., 2001, Cool surfaces and shade trees to reduce energy use and improve air quality inurban areas. Solar Energy 70 (3), pp. 295-310. https://doi.org/10.1016/S0038-092X(00)00089-X
  4. Akbari H,, Konopacki S., 2004, Energy effects of heat-island reduction strategies in toronto, tanada , Energy 29, pp. 191-210. https://doi.org/10.1016/j.energy.2003.09.004
  5. Akbari H., Levinson R., Rainer L., 2005, Monitoring the energy-use effects of cool roofs on california commercial buildings, Energy and Buildings 37, pp. 1007-1101. https://doi.org/10.1016/j.enbuild.2004.11.013
  6. Alberto H. N., Flávio A. S., 2008, Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build., 40, pp. 2169-2176. https://doi.org/10.1016/j.enbuild.2008.06.013
  7. Bohm B. and Danig, P. O., 2004, Monitoring the energy consumption in a district heated apartment building in copenhagen, with specific interest in the thermodynamic performance, Energy and Buildings, 36(3), pp. 229-236. https://doi.org/10.1016/j.enbuild.2003.11.006
  8. Cheung C. K., Fuller R. J, Luther M. B.. 2005, Energy efficient envelope design for high rise apartments, Energy and Buildings, 37(1), pp. 37-48. https://doi.org/10.1016/j.enbuild.2004.05.002
  9. Choi, G. S., Sohn, J. Y., 2010, Thermal performance evaluation of apartment housing using infra-red camera, korea journal of air-conditioning and refrigeration engineering, 22(6), pp. 404-412.
  10. Choi, J. H., Um, J. S., 2010, Introducing strategy of cool roofs based on comparative evaluation of foreign cases, Journal of Environmental Impact Assessment. 19(6), pp. 591-605.
  11. Cool Roof Workshop, 2005, Lisa Gartland, Pacific Energy Center, San Francisco.
  12. Graveline, S. P., 2009, Benefits of cool roofs on commercial buildings. Retrieved July 10, 2012, from, pp. 15-21.
  13. Heiple, S. C. and D. J. Sailor, 2008, Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy and Buildings, 40, pp. 1426-1436. https://doi.org/10.1016/j.enbuild.2008.01.005
  14. Hong, S. H., Jang, M. S., Park, H. S., Yang, K. S., 2001, A study on the typical energy consumption of apartment, journal of the regional association of architectural institute of korea, 17(12), pp. 151-160.
  15. Jeong, J. C., 2008, The spatial factor analysis of urban heat island effect, The Korean Society For Geospatial Information System, pp 97-99.
  16. Jung, G. S., Yoo, H. H., 2010, Analysis of temperature reduction effect of urban green space, The Korean Society for Geo-Spatial Information System, pp 85-86.
  17. KASI, 2011 Korea Astronomy and Space Science Institute, http://www.kasi.re.kr/
  18. KICT, 2010, A study on the application of the exterior finishes for energy saving, pp. 23-39.
  19. Kim, O., 2010, Cool A study on the performance standards and design guidelines of cool roof system, Thesis, Chung-ang University.
  20. KMA, 2010, Korea Meteorological Administration, http://www.kma.go.kr/
  21. Lawrence Berkeley National Laboratory, 2011, Heat island projects (cool roofing materials database), http://heatisland.lbl.gov/coolscience/cool-science-cool-pavements
  22. Lee, J. S, 2002, A study on the color design techniques of residential buildings in U.S.A , Journal of Korean Society of Color Studies. 16(1), pp. 49-59.
  23. Lee, T. C., Yoon, S. H., 2012, Review on radiation temperature distribution of a multipurpose high-rise building by infrared rays camera, Korean Institute of Architectural Sustainable Environment and Building Systems, pp. 77-80.
  24. Moon, C. H., 2007, Improvement of special facility system using district heating by heat load pattern analysis, Thesis, Hanyang University.
  25. Sakagami T., Ogura K., Kubo S. and Farris T,N,, 2002, Application of infrared thermography for contact problems, iutam symposium on advanced optical methods and applications in solid mechanics, Solid Mechanics and Its Applications, 82(14), pp. 603-610. https://doi.org/10.1007/0-306-46948-0_61
  26. Shariah A., Shalabi B., Rousan A., 1998, Tashtoush B., Effects of absorptance of external surfaces on heating and cooling loads of residential buildings in Jordan, Energy Conversion and Management 39 pp. 273-284. https://doi.org/10.1016/S0196-8904(96)00185-9
  27. Synnefa A., Saliari M., Santamouris M., 2012, Experimental and numerical assessment of the impact of increased roof reflectance on a school building in Athens, Energy and Buildings, In Press, Corrected Proof, Available online 6 March 2012.
  28. Tae, W. J., 2005, A study on the optimum slope of the roof for minimum cooling load, journal of the korean solar energy society, 25(4), pp. 119-123.
  29. 近藤靖史, 2009, 都市被覆の日射反射性能向上によるヒ ㅡアイランド緩和と冷房負荷低減, 空氣調和衛生工學, 83(8), pp. 639-643.

Cited by

  1. 도시근린공원의 열환경 개선을 위한 열쾌적성 평가 vol.16, pp.4, 2013, https://doi.org/10.11108/kagis.2013.16.4.153
  2. 대학 캠퍼스의 쿨표면 비율 비교평가: 경북대학교와 UC Davis를 사례로 vol.15, pp.1, 2013, https://doi.org/10.12813/kieae.2015.15.1.117
  3. Evaluation of Applicability of Various Color Space Techniques of UAV Images for Evaluating Cool Roof Performance vol.13, pp.16, 2013, https://doi.org/10.3390/en13164213