• Title/Summary/Keyword: Convolutional neural net

Search Result 308, Processing Time 0.026 seconds

Analysis of unfairness of artificial intelligence-based speaker identification technology (인공지능 기반 화자 식별 기술의 불공정성 분석)

  • Shin Na Yeon;Lee Jin Min;No Hyeon;Lee Il Gu
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • Digitalization due to COVID-19 has rapidly developed artificial intelligence-based voice recognition technology. However, this technology causes unfair social problems, such as race and gender discrimination if datasets are biased against some groups, and degrades the reliability and security of artificial intelligence services. In this work, we compare and analyze accuracy-based unfairness in biased data environments using VGGNet (Visual Geometry Group Network), ResNet (Residual Neural Network), and MobileNet, which are representative CNN (Convolutional Neural Network) models of artificial intelligence. Experimental results show that ResNet34 showed the highest accuracy for women and men at 91% and 89.9%in Top1-accuracy, while ResNet18 showed the slightest accuracy difference between genders at 1.8%. The difference in accuracy between genders by model causes differences in service quality and unfair results between men and women when using the service.

Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer (결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교)

  • Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.

Aerial Scene Labeling Based on Convolutional Neural Networks (Convolutional Neural Networks기반 항공영상 영역분할 및 분류)

  • Na, Jong-Pil;Hwang, Seung-Jun;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.484-491
    • /
    • 2015
  • Aerial scene is greatly increased by the introduction and supply of the image due to the growth of digital optical imaging technology and development of the UAV. It has been used as the extraction of ground properties, classification, change detection, image fusion and mapping based on the aerial image. In particular, in the image analysis and utilization of deep learning algorithm it has shown a new paradigm to overcome the limitation of the field of pattern recognition. This paper presents the possibility to apply a more wide range and various fields through the segmentation and classification of aerial scene based on the Deep learning(ConvNet). We build 4-classes image database consists of Road, Building, Yard, Forest total 3000. Each of the classes has a certain pattern, the results with feature vector map come out differently. Our system consists of feature extraction, classification and training. Feature extraction is built up of two layers based on ConvNet. And then, it is classified by using the Multilayer perceptron and Logistic regression, the algorithm as a classification process.

Automatic Wood Species Identification of Korean Softwood Based on Convolutional Neural Networks

  • Kwon, Ohkyung;Lee, Hyung Gu;Lee, Mi-Rim;Jang, Sujin;Yang, Sang-Yun;Park, Se-Yeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.797-808
    • /
    • 2017
  • Automatic wood species identification systems have enabled fast and accurate identification of wood species outside of specialized laboratories with well-trained experts on wood species identification. Conventional automatic wood species identification systems consist of two major parts: a feature extractor and a classifier. Feature extractors require hand-engineering to obtain optimal features to quantify the content of an image. A Convolutional Neural Network (CNN), which is one of the Deep Learning methods, trained for wood species can extract intrinsic feature representations and classify them correctly. It usually outperforms classifiers built on top of extracted features with a hand-tuning process. We developed an automatic wood species identification system utilizing CNN models such as LeNet, MiniVGGNet, and their variants. A smartphone camera was used for obtaining macroscopic images of rough sawn surfaces from cross sections of woods. Five Korean softwood species (cedar, cypress, Korean pine, Korean red pine, and larch) were under classification by the CNN models. The highest and most stable CNN model was LeNet3 that is two additional layers added to the original LeNet architecture. The accuracy of species identification by LeNet3 architecture for the five Korean softwood species was 99.3%. The result showed the automatic wood species identification system is sufficiently fast and accurate as well as small to be deployed to a mobile device such as a smartphone.

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

The development of food image detection and recognition model of Korean food for mobile dietary management

  • Park, Seon-Joo;Palvanov, Akmaljon;Lee, Chang-Ho;Jeong, Nanoom;Cho, Young-Im;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The aim of this study was to develop Korean food image detection and recognition model for use in mobile devices for accurate estimation of dietary intake. MATERIALS/METHODS: We collected food images by taking pictures or by searching web images and built an image dataset for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase the dataset size. The dataset for training contained more than 92,000 images categorized into 23 groups of Korean food. All images were down-sampled to a fixed resolution of $150{\times}150$ and then randomly divided into training and testing groups at a ratio of 3:1, resulting in 69,000 training images and 23,000 test images. We used a Deep Convolutional Neural Network (DCNN) for the complex recognition model and compared the results with those of other networks: AlexNet, GoogLeNet, Very Deep Convolutional Neural Network, VGG and ResNet, for large-scale image recognition. RESULTS: Our complex food recognition model, K-foodNet, had higher test accuracy (91.3%) and faster recognition time (0.4 ms) than those of the other networks. CONCLUSION: The results showed that K-foodNet achieved better performance in detecting and recognizing Korean food compared to other state-of-the-art models.

Classification of Leukemia Disease in Peripheral Blood Cell Images Using Convolutional Neural Network

  • Tran, Thanh;Park, Jin-Hyuk;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1150-1161
    • /
    • 2018
  • Classification is widely used in medical images to categorize patients and non-patients. However, conventional classification requires a complex procedure, including some rigid steps such as pre-processing, segmentation, feature extraction, detection, and classification. In this paper, we propose a novel convolutional neural network (CNN), called LeukemiaNet, to specifically classify two different types of leukemia, including acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), and non-cancerous patients. To extend the limited dataset, a PCA color augmentation process is utilized before images are input into the LeukemiaNet. This augmentation method enhances the accuracy of our proposed CNN architecture from 96.9% to 97.2% for distinguishing ALL, AML, and normal cell images.

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

A low-cost compensated approximate multiplier for Bfloat16 data processing on convolutional neural network inference

  • Kim, HyunJin
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.684-693
    • /
    • 2021
  • This paper presents a low-cost two-stage approximate multiplier for bfloat16 (brain floating-point) data processing. For cost-efficient approximate multiplication, the first stage implements Mitchell's algorithm that performs the approximate multiplication using only two adders. The second stage adopts the exact multiplication to compensate for the error from the first stage by multiplying error terms and adding its truncated result to the final output. In our design, the low-cost multiplications in both stages can reduce hardware costs significantly and provide low relative errors by compensating for the error from the first stage. We apply our approximate multiplier to the convolutional neural network (CNN) inferences, which shows small accuracy drops with well-known pre-trained models for the ImageNet database. Therefore, our design allows low-cost CNN inference systems with high test accuracy.

FINGERPRINT IMAGE DENOISING AND INPAINTING USING CONVOLUTIONAL NEURAL NETWORK

  • BAE, JUNGYOON;CHOI, HAN-SOO;KIM, SUJIN;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.363-374
    • /
    • 2020
  • Fingerprint authentication identifies a user based on the individual's unique fingerprint features. Fingerprint authentication methods are used in various real-life devices because they are convenient and safe and there is no risk of leakage, loss, or oblivion. However, fingerprint authentication methods are often ineffective when there is contamination of the given image through wet, dirty, dry, or wounded fingers. In this paper, a method is proposed to remove noise from fingerprint images using a convolutional neural network. The proposed model was verified using the dataset from the ChaLearn LAP Inpainting Competition Track 3-Fingerprint Denoising and Inpainting, ECCV 2018. It was demonstrated that the model proposed in this paper obtains better results with respect to the methods that achieved high performances in the competition.